
A0-A113 594 SYRACUSE UN IV NY F/6 9/5
14 1C ROCIRCU IT PACKAGE STRE SS ANALYSIS.(U)
JAN 82 C LIBOVE , R W PERKINS., K KOK 1NI F30602-50-C-0155

U)NCLASSIFIED MAE1237-Fl RADC-TR-81-382 NL

EoonhEEEOEE
EEEMEEMEME



RADC-TR-81-82
Final Technical Report

January 1982

SMICROCIRCUIT PACKAGE
SSTRESS ANALYSIS

Syracuse University

Chares Ube"e
Richard W. Perkins
Klod Kokini

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED]

" DTIC
U- ROME AIR DEVELOPMENT CENTER E

Air Force Systems Command ATc !C
Griffiss Air Force Base, New York 13441

82 04 19 008



This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-382 has been reviewed and is approved for publication.

APPROVED:

PETER F. MANNO
Project Engineer

APPROVED: R0

EDMUND J. WESTCOTT
Technical Director
Reliability and Compatibility Division

FOR THE CO*MANDER:
:! - JOHN P. HUSS

Acting Chief? Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC. PRBEA) Griffies AFB NY 13441. This will assist .us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

-A



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE eWaer Date Ent ered)

ROOREAD INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Final Technical Report

MICROCIRCUIT PACKAGE STRESS ANALYSIS 10 Apr 80 - 9 Aug 81
6. PERFORMING OG. REPORT NUMBER

MAE-1237-Fl
7. AUTHO Rt) B. CONTRACT OR GRANT NUMSER(a)

Charles Libove F30602-80-C-0155
Richard W. Perkins
Klod Kokini

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT PROJECT. TASK
AREA & WORK UNIT NUMBERS

Syracuse University 61102F
Syracuse NY 13210 2306J408

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Rome Air Development Center (RBRA) January 1982

Griffiss AFB NY 13441 13. NUMBER F PAGES

14. MONITORING AGENCY NAME & AOORESS(I( different if" Controttint Office) 1S. SECURITY CLASS. rto this eport)

Same UNCLASSIFIED
IS.. DECLASSIPICATION, DOWNGRADING

N/ASCHEDULE

IS. DISTRIBUTION STATEMENT (at this Report)

Approved for public release: distribution unlimited.

17. DISTRIBUTION STATEMENT (at the Abetract entered n Black 20. it diterent from Report)

Same

Ill. SUPPLEMENTARY NOTES

RADC Project Engineer: Peter F. Manno (RBRA). Appendix D author:

R.W. Perkins, Appendix E co-author: K. Kokini, Chapter 8 of this report

supersedes Appendices A through C of RADC-TR-79-201.

IS. KEY WORDS (Cartinue on reverse side it necessary Wnd Identify by block number)

Design Reliability External pressure Vibration

Stresses Transistors Constant acceleration Seals

Stress analysis Thermal stress Drop test Materials

Screening Thermal shock Impact

20. ABSTRACT (Continue on reverese side If nece ery end Identtfy by block number)

->The response of various package components to various stressful environ-

ments is studied. The environments selected are among those that the

package might experience in the course of mechanical screening by the

methods of MIL-STD-883 ("Test Methods and Procedures for Microelec-

tronics") or they are approximations and idealizations of conditions that

the package might encounter in the field. Specifically, the following

environments are considered: external pressure, constant acceleration,

DO I oAt0 1473 EDITION OF' I NOV s5 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIPICATION OF THIS PAGE (l"ten Dete Cnteed)



UNCLASSI FI ED
SECuRITY CLASSIFICATIQN OF THIS PAGE(Whw O. Eoteed

.,_ impact, sinusoidal vibration, and thermal shock. One or more chapters
of the present report are devoted to each environment.

The package types that are addressed in this study are generally those
that can be described as flat and rectangular (which includes sauare).
Thus, flatpacks and dual-in-line packages are included. The newer
package types now under develpment, with names such a hermetic chip
carriers, leadless chip carriers, or ceramic chip carrers, are also
included, for an investigation into the construction of these packages
has shown that, as far as the stress analyst is c cerned, they are very
similar to the traditional flatpacks. The specific package components
considered include lids,.bases, g3ss --side-walls, lid-to-wall seals,
annular___glas-lea&-through seals, internal wires and their bonds, and
chip and substrate attachments.

SThe broad objective of this work is to direct attention, for each envi-
ronment, to those package areas that are most directly affected by that
environment, and to show, by means of analysis, what the major effects
might be, in terms of stress and deformation. Thus, the information pro-
vided should be of interest mainly to two grou s of people: (a) The pack-
age screeners, who wish to know what screening techniques might or might

not be effective in attacking an area of anti ipated mechanical weakness,
and what the severity level of an effective/creening technique should be
in order that sound packages will not beO4maged by it. (b) The package
designers who, knowing what field or scpeening environments will be
applied to their packages, wish to dlsign them strong enough to survive
those environments. The information in this report may also be of
interest to mny one involved in the diagnosis of mechanical damage to

.-p~ckages.

)There are five appendices in the report. Appendix A contains a compila-
tion of useful material property data. Appendices B and C contain some
analytical derivations that are of too detailed a nature to warrant
inclusion in the main body of the report. Appendix D is a preliminary
study of transistor thermal stresses due to internal heat generation, a
subject not treated elsewhere in the report. Appendix E describes
proposed additional work, of an experimental and theoretical nature,
related to the stress and strength analysis of annular glass seals in
thermal shock._

Accession For3

DTIC T1.!

Availl, L i ty Codes

Dist Speclal

UNCLASSIFI ED

SECURITY CLASSIFICATION OF - AGE(W7,.n Dot* E,-terod)
coPM

I I I I Im l , , , - ,



CONTENTS

Page

Introduction ........................................................ 1

Chapter 1 - EXTERNAL PRESSURE ......................................... 4

I. DESCRIPTION OF PACKAGES ....................................... 5

II. ELASTIC RESTRAINT FURNISIED BY THE WALLS .................... 10

III. FORMULAS FOR MAXIMUM TENSILE STRESS IN THE SEAL ............. 14

A. Linearly Elastic Lid ................................... 14

B. Inelastic Lid .......................................... 20

C. Summary of Formulas for S .......................... 24

D. Application to Design.....x 24

E. Application to Screening .............................. 27

IV. LID COLLAPSING PRESSURE ...................................... 30

A. Brittle-Material Lids .................................. 30

B. Ductile-Material Lids .................................. 37

V. BASE COLLAPSING PRESSURE ..................................... 39

VI. LID DEFLECTION ................................................ 42

A. Brittle-Material Lids .................................. 42

B. Ductile-Material Lids .................................. 46

VII. FLATPACKS IN A CENTRIFUGE .................................... 51

VIII. NUMERICAL EXAMPLES .......................................... 53

IX. EXPERIMENTAL CONFIRMATION AND INFERRED GLASS STRENGTH ....... 69

X. REMARKS ..................................................... 73

Chapter 2 - CONSTANT ACCELERATION ................................... 74

I. WIRE AND WIRE BOND TENSIONS .................................. 75

A. Nomenclature and Physical Constants ................... 75

B. Wire Stress in a Centrifuge Test ...................... 78

C. Wire Stress in a Pull Test ............................ 82

D. Comparison of Centrifuge and Pull Test ................ 84

II. CHIP AND SUBSTRATE ATTACHMENT STRESSES ...................... 87

A. Conventional Bonding .................................. 87

B. Face-Down Bonding ...................................... 90

III. LIDS AND BASES OF RECTANGULAR FLATPACKS ..................... 92

IV. WIRE FLEXURE ................................................ 94

V. REMARKS ...................................................... 97

" -- II II ~ ~~~~~~iiIII l l ...



Page

Chapter 3 - FLATWISE IMPACT .......................................... 99

I. WIRE STRESSES ................................................ 100

A. Upper Bcund Estimate .................................. 100
B. More Accurate Analyses ................................ 103
C. Numerical Examples .................................... 108

II. BASE STRESSES ................................................ Il

A. Equivalent Lateral Pressure ........................... 111
B. Numerical Examples .................................... 113
C. Incorporation of Elastic Large Deflection

Effects: A Simple Expedient ....................... 118
D. Incorporation of Elastic Large Deflection

Effects: A More Rigorous Approach ................. 118

III. LID RESPONSE ................................................. 119

A. Plasticity Considerations ............................. 119
B. Maximum Deflection of a Constant-Thickness

Ductile Lid ........................................ 124
C. Maximum Deflection of a Ductile Lid with

Thinned Edges ...................................... 125
D. Numerical Examples .................................... 126

IV. FEASIBILITY OF THE DROP TEST AS A SCREEN .................... 127

Chapter 4 - EDGEWISE IMPACT ......................................... 131

I. SINGLE COMPONENT LID OR BASE ................................ 131

A. Elastic ................................................ 131
B. Inelastic .............................................. 136

C. Lid with Thinned Edges ................................ 140

II. TWO-COMPONENT BASE .......................................... 140

A. Elastic ................................................ 141
B. Inelastic .............................................. 142

Chapter 5 - SINUSOIDAL VIBPATION .................................... 143

Chapter 6 - THERMAL SHOCK: FLEXURAL STRESS IN FLATPACK LID SEALS .... 150

I. SYMBOLS ...................................................... 151

II. THERMAL ANALYSIS ............................................ 155

A. Case (a): dc  < t ...................................... 156
B. Case (b): Temperature Perturbation Extends Through

Entire Thickness of Lid ..................... 159
C. Time-Temperature Equation for Case (a) ................ 160

D. Time-Temperature Relation for Case (b) ................ 162

III. STRESS ANALYSTS .............................................. 64

A. Maximum Bending Moment ................................ 166

B. Flexural Stresses in the Seal.......................... 170

ii



Page

IV. NUMERICAL EXAMPLE ............................................ 173

A. Problem ................................................ 173
B. Solution ............................................... 174

V. FLEXURAL STRESSES PRODUCED IN SCREENING ..................... 176

VI. APPLICATION TO PACKAGE OR SCREEN DESIGN ..................... 180

VII. INCLUSION OF BOILING ......................................... 180

VIII. REMARKS ...................................................... 184

Chapter 7 - THERMAL SHOCK: BIAXIAL SURFACE TENSION IN DIP SEALS ..... 186

I. EVALUATION OF SURFACE TENSION ............................... 187

II. APPLICATIONS ................................................. 188

Chapter 8 - THERMAL SHOCK: ANNULAR GLASS SEALS ...................... 192

I. MODELLING .................................................... 195

A. Modelling for Temperature Analysis .................... 196
B. Modelling for Stress Analysis ......................... 199

II. TEMPERATURE ANALYSIS ......................................... 201

A. Basic Equations ........................................ 201
B. Finite-Difference Formulation ......................... 203
C. Solution of the Finite-Difference Equations ........... 206

III. STRESS ANALYSIS .............................................. 209

A. Basic Equations ........................................ 210
B. Glass Stress Equations in Dimensionless Form .......... 214
C. The Limiting Case c . w. .......... ..................... 216

D. Numerical Evaluation of Stresses in the Glass ......... 217

IV. COMPUTER PROGRAM ............................................. 219

V. ILLUSTRATIVE APPLICATION .................................... 230

APPENDIX A: MATERIAL PROPERTIES .................................... 236

1. Adhesives...................................................238
2. Ceramics ................................................... 243

3. Fluids ..................................................... 253
4. Glass ...................................................... 260
5. Nickel-Iron Alloys ......................................... 279

6. Solders ..................................................... 282

7. Wires ....................................................... 297

APPENDIX B: FLEXURAL ANALYSIS OF A TWO-COMPONENT COMPOSITE PLATE... 300

1. Notation .................................................... 302
2. Moment-Curvature Relations ................................. 302
3. Stresses .................................................... 306
4. Use of Existing Data ....................................... 308

iii

LIII ii i_ , - . .. ._



Page

APPENDIX C: APPROXIMATE RESPONSE OF AN ELASTIC FLAT PLATE TO A
PRESCRIBED MOTION OF ITS BOUNDARY ...................... 313

1. Notation ................................................... 313
2. Analysis ................................................... 314
3. Illustrative Application .................................. 317

APPENDIX D: TRANSISTOR THERMAL STRESSES DUE TO INTERNAL HEAT
GENERATION (By R.W. Perkins) .......................... 323

1. Introduction .................................... * .......... 323
2. Thermal Stress Analysis ................................... 326
3. Temperature Analysis ...................................... 328
4. Discussion ................................................. 331

APPENDIX E: PROPOSED ANALYSIS AND EXPERIMENTS FOR FURTHER EVALUA-
TION OF THE EFFECTS OF THERMAL SHOCK ON THE STRESSES
AND STRENGTH OF ANNULAR GLASS SEALS (By K. Kokini and
C. Libove) .............................................. 334

1. Introduction ............................................... 334
2. Improved Temperature Analysis ............................. 335
3. Improved Stress Analysis .................................. 338
4. Experimental Program ....................................... 345

REFERENCES .......................................................... 351

iv



EVALUATION

MICROCIRCUIT PACKAGE STRESS ANALYSIS

The objective of this effort was to refine and summarize the past research on the

stress analysis of microcircuit packages and to compile a listing of material

properties for use in performing mechanical stress predictions. Included in this study

was the mechanical evaluation of leadless chip carrier packages. This investigation

showed that the formulas for traditional flatpacks are applicable to leadless chip

carrier packages. The following are some of the important results:

1. Formulas were developed to predict the maximum tensile stress in the lid-

to-wall seal; the central deflection of the lid, including the pressure required to crack

or collapse the lid or the base; and the equivalence of external pressure resulting

from centrifuge acceleration testing applicable to lid behavior and seal stress

resistence.

2. Centrifuge testing was determined to be less effective than the pull test in

stressing aluminum wires and wire bonds. However the centrifuge test can produce

significant flexural stressing of gold wires if the centrifugal force acts parallel to the

base of the package and perpendicular to the plane of the wire loop.

3. Theoretical analysis of the feasibility to perform drop test as a mechanical

reliability screen indicates that the concept is promising enough to warrant develop-

ment of a prototype test fixture.
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4. Equations were developed to predict the damaging effects that edgewise

shock impact has on the lids and bases of microcircuit packages.

5. Sinusoidal vibration shows little promise as a mechanical screen for

detecting defective wires or weak wire bonds in microcircuit packages.

6. Formulas were developed to predict the maximum flexural stresses produced

in the lid-to-wail seal of a microelectronic flatpack under conditions of thermal-

shock screening.

In addition, five detailed appendices to this report were prepared. Appendix A

contains a compilation on the following microcircuit material properties: adhesives,

ceramics, fluids, glasses, nickel-iron alloys, solders, and wires. Appendix B contains

the flexural analysis of a two-componer'. composite plate. Appendix C contains an

analysis of the approximate response of an elastic flat plate to a prescribed motion of

its boundary. Appendix D is a preliminary study of transistor thermal stresses due to

internal heat generation. Finally Appendix E describes proposed additional work, of

an experimental and theoretical nature, related to the stress and strength analysis of

annular glass seals in thermal shock.

PETER F. MANNO

Project Engineer
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INTRODUCT ION

This report summarizes several years' research on the stress analysis

of microcircuit packaging performed at Syracuse University under the spon-

sorship of the Rome Air Development Center and monitored by Mr. Peter Manno

of the Reliability branch of that agency.

In this research we have studied the response of various package com-

ponents to various stressful environments. The environments selected are

among those that the package might experience in the course of mechanical

screening by the methods of MIL-STD-883 ("Test Methods and Procedures for

Microelectronics") or they are approximations and idealizations of condi-

tions that the package might encounter in the field. Specifically, the

following environments are considered: external pressure, constant accel-

eration, impact, sinusoldal vibration, and thermal shock. One or more

chapters of the present report are devoted to each environment.

The package types that are addressed in this study are generally

those that can be described as flat and rectangular (which includes square).

Thus, flatpacks and dual-in-line packages are included. The newer package

types now under development, with names such as hermetic chip carriers,

leadless chip carriers, or ceramic chip carriers, are also included, for

an investigation into the construction of these packages has shown that,

as far as thr ,;tress analyst is concerned, they are very similar to the

traditional flatpacks. The specific package componients considered include

lids,bases, glass side-walls, lid-to-wall seals, annular glass lead-through

seals, internal wires and their bonds, and chip and substrate attachments.

The broad objective of this work is to direct attention, for each

environment, to those package areas that are most directly offected by
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that environment, and to show, by means of analysis, what the major effects

might be, in terms of stress and deformation. Thus, the information pro-

vided should be of interest mainly to two groups of people: (a) The package

screeners, who wish to know what screening techniques might or might not

be effective in attacking an area of anticipated mechanical weakness, and

what the severity level of an effective screening technique should be in

order that sound packages will not be damaged by it. (b) The package

designers who, knowing what field or screening environments will be applied

to their packages, wish to design them strong enough to survive those

environments. The information in this report may also be of interest to

any une involved in the diagnosis of mechanical damage to packages.

It will be seen that the analyses in this report rely heavily on

approximations, simplifying assumptions, and idealized models wherever it

appears that such techniques can reduce a complex problem to a simple one

without loss of tht, essential aspects of the phenomenon being studied.

This, the time-honored approach of applied mechanics, has a number of

advantages over the usually more accurate detailed numerical analysis by

the finite element method, which is so popular at the present time. First,

it often yields a closed form solution from which the important dimension-

less parameters become evident. A knowledge of those parameters is very

helpful if one wishes to know, for example, whether or not a stressful

situation can be relieved by changing certain dimensions or geometrical

form or by substituting one material for another. Such insights may be

more difficult to obtain from the finite element methods. Secondly, the

approximate solutions often give "answ.ers" more quickly and cheaply than

the finite element analyses, especially if one is not experienced in using

the latter on a routine basis. And thirdly. the environmental conditions,

-2-



material properties, and package construction details are often not known

well enough to justify the cost and time expenditure required for a more

precise analysis. Thus it is felt that the analysis techniques and for-

mulas presented in this report can be of considerable value. Their ultimact

justification will, of course, depend on the reasonableness of the results

that they give and on their usefulness in leading to successful package

designs and screening procedures.

There are five appendices in the present report. Appendix A contains

a compilation of useful or conceivably useful material property data,

Appendices B and C some analytical derivations that were considered to bc

of too detailed a nature to include in the m tin body. Appendix D is a

preliminary study of transistor thermal strefses due to internal heat gen-

eration (the subject of internal heat generation is not treated elsewhere

in the report). And Appendix E described prcposed additional work, experi-

mental and theo-etical, related to the stress and strength analysis of

annular glass seals in thermal shock.

Within each chapter or appendix the numbering of tables, equations

and figures starts from 1. If it is necessary to refer to an item in

another chapter or appendix, the location of the item will be specified.
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Chapter I - EXTERNAL PRFSSURE

External pressure is employed in the MIL-STD-883 seal hermeticity test

(test method 1014.2 of Reference 1). This environment tends to produce in-

ward bending of the lid and base of rectangular flatpacks, which can be

especially pronounced in the largcr size packages. If suifficiently high,

the external pressure can cause cracking of ceramic lids or bases and exces-

sive deflection or collapse of metal lids. The relatively short stubby

sidewalls provide a considerable amount of elastic restraint against rota-

tion of the edges of the lid and base. Thus, there is also a transfer of

bending moments through the lid-to-wall and base-to-wall seals into the

walls. If the bending moments are sufficiently high, they can damage the

seals, or, if the walls are mainly of glass, they can fracture the glass.

The metal lids of some packages have their edges thinned down to a small

fraction of the main lid thickness.* In that case the transfer of bending

moment from the lid to the wall Is not likely to be a problem. The thinness

of the edge, in conjunction with plastic yielding of the lid material, will

severely limit the maximum developable bending moment in the edge of the

lid -- in effect, providing a barrier against the transmission of excessive

bending moment across the lid-to-wall seal.

All of the above-mentioned effects of external pressure are assessed

quantitatively in this chapter, which is based largely on Reference 2. For

simplicity, the discussion will generally be in terms of the lid; it should

be understood, however, that much of what is said will apply with obvious

modifications to the base as well. Usually, the base-to-wall connection is

* The increased flexibility achieved thereby makes the lid edges conform

better to any unevenness in the mating wall surface, thus promoting seal
tightness.
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much sturdier than the lid-to-wall connection (in fact, the base and wall

are Integral in some packages). Therefore, when discussing seal stresses

due to tile transmission of edge bending moments, it is appropriate for the

discussion to be in terms of the lid, rather than the base.

I. DESCRIPTION OF PACKAGES

The package is rectangular, as shown in Figure 1, with the cavity

having width a, length b, and height h. The dimensions a and b are measured

at the top of the cavity, and a is the shorter of the two if they are un-

equal. The dimension h is assumed to be small compared to b.

If ceramic, the lid is assumed to have a constant thickness t in tile

region above the cavity and to be no thinner than t in the edge regions

above the walls, (Fig. 2). If metallic, the lid is assumed to have a con-

stant thickness t in the region above the cavity and is allowed to have a

smaller thickness t in the edge strips above the walls; if the lid does note

have thinned edges, t should be replaced by t in the formulas to be developed.e

The Young's modulus E (modulus of elasticity) and the Poisson's ratio

v of the lid material are assumed to be known. For most metals v can be

taken as 0.3 with little error. For ceramics a v of 0.22 is reasonable.

Knowing E, t and v, one can compute the elastic "plate flexural stiffness"

D of the lid as follows:

D = Et3 /[12(l-v
'2 )] (1)

The basic flexural strength of the lid Is assumed to be known in

terms of its ultimate bending moment per unit width, which will be designated 
4

as m in the interior and me in the edge regions, with the latter designation

eI
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being pertinent only to meutilic lids with edge zone thickness t smaller

than the main thickness t. These ultimate bending moi, Cnts per unit width

can be computed from the bending modulus of rupture ob of the material via

the formulas

m = ob t/6 me = t/6 k2)

By means of tests on cantilever strips cut from commercially available

Kovar lids (see Appendix A, Section 5), the writer has estimated ub for

such lids to be 107 ksi,with a coefficient of variation of 8 percent. For

ceramic lids ab can be obtained from the manufacturer's literature, where

it is sometimes referred to as the "flexural strength."

There are different physical actions associated with the development

of the ultimate bending moment, depending upon whether the lid is a ductile

metal, like Kovar, or a brittle ceramic. In the former case, m and m are

equal to the fully plastic bending moments per unit width, and they are

associated with the development of very high curvatures without any fracture

of the material. In the latter case, m is the bending moment per unit

width at which fracture occurs, and there is little or no plastic deformation

preceding the fracture.

Two kinds of wall construction will be assumed, namely "uniform" and

"stepped," as illustrated in Figures 2(a) and (b). In the former, whic!l is

typical of an all metal package, the material and the thickness w are

constant along the entire height of the wall. In this case E and v will

w w

denote the Young's modulus and Poisson's ratio of the wall material and

D w  EwW3/(12(-v w2)] (3a)

-7-



will denote its plate flexural stiffness. In the 3-segment stepped wall

illustrated in Figure 2(b), the material and/or the thickness are only

piece-wise constant. In such a wall, w, wl, w2 will denote the thick-

nesses of the three segments, starting from the top. Ew . El, E2

will denote their respective Young's moduli; vw' vi, V2  their Poisson's

ratios; and DW, D1 , D2, their plate flexural stiffaesses, defined as

follows:

E w 3  E w 3  E w2 3

D , D1  1 D 22 (3b)
W 12(1-v w2) 12(1-v 12) 2 12(1-v 2

2)

The top of the top segment of the wall will have a height above the base

that is equal to h, the depth of the cavity. The heights of the tops of

the remaining segments above the base will be denoted by h and h2P

respectively, as indicated in Figure 2(b). In a typical three-segment

stepped wall like the one shown in Figure 2(b), the top segment would be

a metal seal frame and the other two segments would be of glass. All four

walls are assumed to be identical in construction and cross section.

Two kinds of lid-to-wall seal will be considered: the "wide seal" and

the "narrow seal," which are illustrated in Figure 3. In the former, the

seal width w5 is essentially equal to the thickness w of the top of the

wall. This kind of seal would result typically from the use of a solder

preform. In the narrow seal, which might result from an electrical seam

welding process, the seal width w is much smaller than w, and the seal is
s

confined to the outer limits of the lld-wall interface. In such a seal, e

will denote the distance from the inner edge of the wall top to the middle

of the seal width (see Figure 3(b)).

-8-
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Figure 3.- Lid-to-wall seal geometries,
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Wall, wall.

Fijure 4.- Wall flexure due to bending moments applied at top and bottom
by lid and base,
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II. ELASTIC RESTRAINT FURNISHED BY THE WALLS

It will be assumed that under hydrostatic external pressure the lid

may be regarded as a uniformly loaded rectangular plate, with width and

length equal to the cavity dimensions a and b, and with edges elastically

restrained against rotation by the walls of the package. Therefore it

will be necessary to evaluate the degree of elastic restraint furnished by

the walls to the edge of the lid, and to that end the walls will be

regarded as wide vertical beams of length (i.e., height) h. At any loca-

tion within a wall there will be a local rotation 0 (in radians) and a

local bending moment intensity M (in-lb/in) at the upper end, and corres-

pondingly a local rotation 0 b and local bending moment intensity Mb at

the lower end (see Figure 4), where M and Mb are furnished by the lid and

base, respectively, to the wall. Thus the lid "sees" an elastic restraint

against rotation of stiffness k = M/e.

The simplifying assumption Mb = M will often be appropriate as an

approximation. Making this assumption and analyzing the wall as a wide

beam of length h, we can solve for 0 as a linear function of M and thus

arrive at the following formula for k:

D
h (4)

where a is a dimensionless constant whose value depends on the nature of

the wall. If the wall is uniform, as in Figure 2(a),

a =2 (5a)

If the wall is a three-segment stepped wall, as in Figure 2(b),
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a 2 (5b)
D / 2-h12 h I2-h 2 22

1 2/

Setting D1 D 2 in Eq. (5b) reduces it to (5a), as it should.

For later use we now introduce a dimensionless wall stiffness para-

meter, K, which is essentially a measure of the ratio of the wall flex-

ural stiffness to the lid flexural stiffness. K is defined as follows:

4 k (6a)
K=T(D/a) = 

2 h D

If the Poisson's ratios v and v are equal, this definition reduces to

E3

4 a Ew wQ 3b
= r - ( ) a (6b)

In graphs to be given later, certain quantities are plotted as functions

of arctan K, rather than as functions of K. Figure 5 will permit an easy

conversion from K to arctan K. For most packages arctan K will be fairly

close to the upper limit of 7/2, or 1.57, implying that the edges of the

lid are very close to being clamped by the walls.

If the base, rather than the lid, is under consideration, the per-

tinent elastic restraint stiffness is k M.O/eb rather than k. When

the assumption M - M is appropriate, the following formulas are obtained

for kb from the analysis of the wall as a beam:

D
w (7a)
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if the wall is uniform, as in Figure (2a); and if the wall is stepped, as

in Figure 2(b),

kb =b h (7b)

where

(7c)
2

b= D2 2 - (h - h2) 2  (h - h) 2 - (h - hl) 2  (h - h)21

+ 
+ D_ j

When studying the base, the assumption M = 0 will be more appropriate than

M = Mb if the lid has thinned edges which because of their thinness and

plastic yielding cannot exert much moment. In that case, in place of

(7a) and (7c) have, respectively,

D

kb=3 -w (7a)'

(7C)'

3b 2 [h3 -(h - h2 )
3  (h - h2) 3 - (h - hl ) 3  (h - hl

32 
DI  + D

And the dimensionless wall stiffness parameter K should then be computed

from the formula

4 hb
K = b (8)

instead of (6). When dealing with the base, the dimensions a and b should,

of course, be based on the cavity dimensions at the bottom of the wall,

rather than at the top of the wall, and D on the properties of the base.

-13-



111. FORMULAS FOR MAXIMUM TENSILE STRESS IN THE SEAL

A. 'Linearly Elastic Lid.- Under the action of a uniform gage pres-

sure p (psi), reactions will develop along the edges of the lid, as

depicted in Figure 6. These will include bending moments of varying inten-

sity M (in.-lb per in.), due to the restraint against rotation furnished by

the walls, and an effective vertical shear of varying intensity V (lb per

in.). The maximum values of M and V occur at the middle of the long side and,

as long as the lid is linearly elastic (i.e., obeys Hooke's Law), can be

expressed as

Mmax = n1  pa2  (9)

V = n 2 pa (10)max 2

where n1 and n2 are functions of the elastic restraint parameter K and the

aspect ratio b/a of the lid. The values of nI and n2 associated with any

given configuration can be obtained from Figures 7 and 8, respectively.*

The maximum tensile stress S in the seal is most likely to occur atmax

the middle of the long side, where the bending moment transmitted from the

*In Figure 7 the data for a clamped plate (K=o, arctan K=7/2) are

taken from Table 35 of Reference 3. All other data in this figure are
based on the analysis in Appendix A of Reference 4. In Figure 8 the data
for a simply supported plate (arctan K=0) are from Table 8 of Reference 3.
The data for a clampcd plate (arctan K= /2) are based on the analysis in

Appendix B of Reference 4. The curves for elastically restrained plates
(arctan K = .4, .8, 1.2) were inserted by interpolation, assuming a linear
variation of n, with respect to arctan K, which is approximately the varia-

tion obtained for n 1 . In view of the snall change in n2 in going from
simple support to clamping (around 6% at the most) and the small role that
n 2 will play in the subsequent development, the linear interpolation employed
in Figure 8 Is considered acceptable.
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Figure 8.- Intensity of vertical reaction at the middle of the

long side for a uniformly loaded rectangular plate

obeying Hooke's law with edges elastically restrained

against rotation (v =0.3)
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lid to the wall is a maximum. At this location the bending moment Mmax

and wrtical shear V are transferred to the edge strip of the cover
max

directly over the wall, as shown in Figure 9.* The edge strip transfers

these in turn to the top of the wall, along with the force pw per unit length

due to hydrostatic pressure p acting at the top of the edge strip. Thus, tLhe

edge strip is essentially a loading device to transfer the forces shown in

Figure 9 to the wall below it.

The states of stress assumed to be developed at the top of the wall, as

a result of the forces applied to it by the edge strip in the middle of the

long side, are shown in Figure 10. In the case of a wide seal we are

assuming a linear variation of normal stress across the thickness of the

wall. In the case of a narrow seal we assume instead a uniform tensile

stress in the seal area together with a concentrated compressive line load

along the inner edge of the wall. In both cases the maximum tensile stress

S in the seal material occurs at the outside edge.max

The stress distributions of Figure 10 must be statically equivalent to

the loading of Figure 9. From this equivalence one can deduce the following

expressions for the maximum tensile stress in the seal:

.... 6 -P + max (lla)max max max 2 w- w

in the case of a wide seal (Figure 10(a)), and
M 2

ma- pw2

S = (lb)max w e
s

*Recall that for analytical] purposes we are considering the lid to end

at the inner edges of the wall.
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in the case of a narrow seal (Figure 10(b)). Substituting for Mma x  and

V their known values from Equations (9) and (10), we obtain the following
max

formula for computing S :

max
Smax =p(a)n (2

where

n = 6n + 2n W - () (3a)
1 2 a a

in the case of a wide seal, and

n = [n - _ ( w (13b)
1~ 2.~ a ew,

in the case of a narrow seal, (Fig. lOb). In extreme cases Equation (12)

will give negative values of S , implying that no amount of externalmax °

pressure can produce tension in the seal.

Brittle materials, such as ceramics, obey Hooke's law reasonably well

up to the point of fracture. Thus, Equation (12), which is based upon

Hooke's law, may be assumed to be valid for ceramic lid packages as long

as the pressure p is less then the lid collapsing pressure pultimate dis-

cussed in Section IV.

B. Inelastic Lid.- Equation (9) Is based on Hooke's law and it there-

fore predicts a linear relationship between M and p, which is representedmax

by the line OBEA in Figure 11. In the case of a brittle material lid this

line may be considered valid for all pressures up to the point of fracture.

If the lid is of a ductile metal, however, at some point, represented by

B in Figure 11, the pressure will become high enough to produce plastic

-20-
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(i.e., inelastic) behavior. The lid will not fracture, but the graph of

M max versus p will depart from the straight line, and Mmax will approach the

fully plastic bcnding moment m asymptotically along a curve such as OBCD.e

The determination of this curve is a difficult problem in elasto-plastic

plate analysis. We shall avoid this problem by simply approximating the

curve OBCD by the two straight-line segments OE and ED. That is, Equation

(9) will be considered valid as long as its right side, nIpa 2, is less

than me , and Equation (9) will be replaced by

4 =M (14)max e

if nIpa 2 equals or exceeds m. Equation (10) is also based on ilooke's law,

and its validity will therefore also break down at the pressure associated

with point B of Figure 11. We shall ignore this, however, and continue to

use Equation (10) for all pressures, on the ground that V generally plays
max

a smaller role than M in producing stress in the seal and we therefore do
max

not need to know it as precisely. Thus, the sole effect of lid plasticity

in our considerations will be to replace Equation (9) by (14) if nlpa 2

equals or exceeds me ; that is, if

P > me/nla 2 Pt (15)

We shall call the right side of this inequality the transition pressure and,

as indicated, represent it by the symbol Pt" It is the pressure associated

with point E in Figure 11. The corresponding value of S we shall callmax

the transition stress and represent it by S . Smax t  max t can be evaluated by

substituting the transition pressure pt = me/nla2 for p in Equation (12),

with the result

I-22-



S max t  men/w2n (16)

When the inequality (15) is satisfied, we may compute Smax from Equa-

tions (11) by substituting me for Mmax and the right side of Equation (10)

for V The result is
max

6m
S e + p(2n2 1) (17)

W

for a wide seal, and

m w2
S - P(--) (18)
max w e 2we

S S

for a narrow seal.

Equations (17) and (18) show that now the worst case (i.e., the largest

positive S max ) does not necessarily occur at the highest pressure. This is

because the p term in Equation (18) is always negative and the p term in

Equation (17) is negative if 2n a - 1 is negative. Thus, increasing p can
2 w

cause a reduction in S max . To obtain "worst-case" formulas, we must replace

p in Equation (18) by the lowest value it can have and still satisfy condition

(15), that is, by the transition pressure Pt; and we must make the same

replacement in Equation (17) if 2n -1 is negative. Consequently, given
2 w

any existing pressure p which satisfies (15), the maximum seal tension

produced In the course of applying that pressure (not necessarily the seal

tension at that pressure) is:

-23-



6m
e + p (2n12 a

W2 
1w

S m the larger of and (19a)
max

6m m__e + e (2n2 i

w 2  nla
2  2w

for a wide seal; and

m m w2 wmS e-w Me wl )- (19b)
max wwe we 2n a

for a narrow seal. Equations (19) can give negative values for Smax, which

means that the given pressure has produced no tension in the seal. Like

Equation (12), they are limited to pressures below the lid collapsing pres-

sure pultimate discussed in Section IV.

C. Summary of Formulas for S-_ .- The formulas for Smax developed in

the two preceding sections are summarized in Table 1.

D. Application to Design.- The formulas of Table 1 can be of use

both to the designer, whose objective is to design a package that will

remain hermetic under a specified screening pressure p, and the user, whose

objective is to select an appropriate screening pressure p that will worsen

or destroy the hermeticity of packages with poor quality seals.

Considering first the designer, let us suppose that he knows the

sealing material to be used and has a value for the allowable tensile stress

Sall of that material. Then his criterion for a satisfactory lid-to-wall

seal design, from the point of view of retaining hermeticity under a given

-24-
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external screening pressure p, should be that S max, as given by the appro-

priate box of Table 1, be less than Sall* That is,

Smax < S all (20)

In selecting Sall the designer should of course be conservative. If

S al is taken as the median tensile strength of the sealing material, then

packages designed on the basis of the equality sign in Equation (20) will

have a failure rate of approximately 50% even if properly sealed. (The

failure rate will be still higher for a mixture of properly and improperly

sealed packages.) On the other hand, if the designer selects for S all the

lowest I-percentile value of the material strength, then he should expect

only a 1% failure rate for properly sealed packages designed on the basis

of Equation (20) with the equality sign. The designer should also consider

the possibility of the deposited sealing material or its interfacial com-

pounds having a different tensile strength than the bulk sealing material.

In the case of solder, the deposited sealing material may be stronger than

the bulk sealing material because of the restraint against lateral contrac-

tion in a thin solder layer in tension (see Section 6 of Appendix A.)

There is one special precaution to be observed in applying Equation

(20) to a stepped-wall package (Figure 2(b)). In such a package the upper-

most wall segment is typically a metal seal frame, while the segment below

it is of glass. In that case, the critical seal could be the glass-metal

interface (or the glass itself) at the underside of the seal frame, rather

than the metal-to-metal bond at the top of the seal frame. Therefore, the

designer should be sure that the inequality in Equation (20) is satisfied

for both seals - the usually wide (but possibly narrow) one at the top of

-26-



the seal frame, with S all based on the tensile strength of the sealant

tbere; and the wide seal of width w at the underside of the seal frame, with

S al based on the tensile strength of the glass.

It could happen that the designer has very little data on the distri-

bution of tensile strength values for the sealing material, or even on the

mean strength, but he does know that a certain previously designed similar

package, designated as I, when properly sealed with the same material had

an acceptable failure rate F under a screening pressure of pI* Then in

order for the new package, designated as II, to have a failure rate no

greater than F when properly sealed and subjected to its screening pres-

sure P1I, he should so design package II that its Smax is no greater than

that of package I. Thus, his criterion for a satisfactory design of pack-

age II should be

(Sma x) < (Sma x ) (21)
II I

where both S max's are taken from Table 1, but not necessarily from the

same box of that table.

E. Application to Screening.- Turning now to the user of an already

designed package, let us first suppose that he has a minimum acceptable

value, Saccept' for the tensile strength of the seal, and he wants to be

sure of rejecting all packages with seal strengths less than that. Then

he should select a screening pressure p such that the Smax given by Table 1

-27-
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is equal to or greater than Saccept' or, if that cannot be accomplished,

a screening pressure p that will make S as large as possible.*
max

In the case of a ductile material lid, the procedure for accomplish-

ing this depends upon whether S is less than or greater than theaccept

transition stress S defined by Equation (16). If S < Smax t  accept maxt

the elastic formula (12) applies. Replacing S in this formula by
max

Saccept, and solving for p, we obtain

a 2 -1
p =S F[(a) n) (22)

accept w

as the appropriate screening pressure. On the other hand, if

S > S , Equations (19) apply. Then for a wide seal with 2n2 A -l
accept max2

positive, we may equate the top expression of (19a) to S and solveaccept

for p to obtain the following formula for the appropriate screening pres-

sure:

P(Sacept 2
- M 2n2 -2n (23)

a

In the case of a narrow seal, or a wide seal with 2n 2 - -1 negative, it

is not possible to achieve S = S when S > S , for inmax accept accept max t

those cases Smax t is also the largest achievable value of S max. Then we

must settle for a screening pressure that will give S as large a valuemax

as possible; since that value is S maxt, the required pressure is

*We are assuming here that whether good or poor the seal quality is uniform

around the periphery of the seal, so that during screening seal stresses

of damaging magnitude need not be present along the engire periphery, but

may be localized at the middle of the longer sides.
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SPt = m e/n 1a
2  (24)

In the case of a ceramic lid, linearly elastic behavior will be

assumed in the lid up to fracture. Thus, Equation (22) may be used in

such a case as long as the screening pressure it provides is less than the

lid collapsing pressure pultimate discussed in Section IV.

The screening pressure formulas developed in this section are sum-

marized in Table 2. The pressures therein should be regarded as minimums.

Larger pressure, applied through stepwise increments, can be used as long

as they are below pultimate and do not cause undesirably large lid deflec-

tions. The effect of using a pressure that is higher than the one specified

in the table is to enlarge the portion of the lid periphery in which the

extreme-fiber seal stress exceeds S or has equalled S . The useaccept max~

of larger pressures may be particularly advisable when the lid is ductile,

in view of the !act that the simplified curve OBED of Figure 11, on which

the tabulated formulas are based, tends to over-estimate M
max

Table 2.- Summary of Formulas for Appropriate Screening Pressure

Ductile Lid

S >S

accept max t ,
Brittle___________________________

L d Wide Seal
accept - max t  

Narrow

2n 2  - 0O2n - < 0 Seal
2 w 2 w

6m

P accept accept w2 me
a 2  P=p=

a)2n a na 2

() n 2n - - 1 n
V~ 2w

(Eq. (22)) (Eq. (23)] [Eq. (24)]
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In order to use the formulas in Table 2, one must decide on a value of

the minimum acceptable seal strength, Saccept. It is conceivable that the

screener of a package will not have enough information about the sealing

material to be able to specify a value for S accept, but he might know that

in the past a certain pressure pI was considered suitable for screening a

certain package, designated as package I, that employed the same sealing

material as the package now under consideration, which will be designated

as package II. Then the S produced in package I by its screening pres-max

sure p1 should be an acceptable maximum seal stress in package II. Thus,

the following rule can be used to arrive at a value of S for packageaccept

II:

(S ) I (S) produced by p1  (25)

where the quantity on the right side is obtained from the appropriate

formula of Tab1e 1.

IV. LID COLLAPSING PRESSURE

It is important, in both screeninp and design, to be able to esti-

mate the lid collapsing pressure p ultimate' and in this section formulas

are presented to facilitate making such an estimate. In presenting these

formulas we consider separately lids of a brittle material, such as cer-

amic, and lids of a ductile material, such as Kovar, since the mechanism

of collapse is different for both types.

A. Brittle-Material. Lids.- For a lid made of perfectly brittle

material it could be assumed that fracture will occur when the calculated

maximum tensile stress o in the lid equals the ultimate tensilemax

strength ot of the material. Ceramics employed for microelectronic

-30- .O
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packaging may not, however, be perfectly brittle in flexure. This is evi-

denced by the fact that quoted values of the bending modulus of rupture 0b

(also called "flexural strength") of such ceramics are somewhat higher than

the quoted values of a t (see Section 2 of Appendix A). Therefore it may

be somewhat more realistic to take the following as a criterion of fracture

or collapse of supposedly brittle-material lids:

amax = ob (26)

In order to apply this criterion, one must have information on 7m as a
max

function of the applied pressure p. Information of this kind is presented

in Figure 12, which is based mainly on Reference 5 and which takes into

account large-deflection effects. Figure 12 gives a through a dimension-

maxa
less constant n 7 related to a ma x as follows:

0ma = n7 E () (27)

This relationship permits the collapse criterion (26) for brittle-material

lids to be written as

b a 8)n7  Y t (8

The graphs of n7 (Figure 12) require some discussion: Although data

for nI are available for K values ranging from 0 to - (arctan K ranging

from 0 to w/2), data for n7 are available only for the limiting cases of

simple support (K = arctan K = 0) and clamping (K - -, arctan K = n/2).

Therefore interpolation between a K = - graph and a K = 0 graph of Figure

12 may sometimes be needed in estimating n7. A linear interpolation based

on arctan K, though non-rigorous, should be sufficiently accurate for
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practical purposes; for most large flat-packs the assumption K = would

also be suitable. A second difficulty associated with the estimation of n 7

derives from the fact that the large-deflection behavior of a plate is

sensitive to whatever restraint the plate edges are under, in regard to

their movement in the plane of the plate. Graphs (a) and (c) of Figure 12

assume that such restraint is negligible; these graphs are felt to be appro-

priate when the wall stretching stiffness (e.g., E hw in the case of a uni-w

form wall) is small compared to the lid stretching stiffness, Eat. Graphs

(b) and (d), on the other hand, assume that the edges are free to curve

inward but not to strain along their length; these graphs are more appro-

priate for cases in which the wall stretching stiffness ls large compared to

the lid stretching stiffness. For most large flat-packs Figure 12(c) should

be appropriate.

Let us denote by pultimate the collapse pressure estimate obtained

through the use of Equation (28) in conjunction with the graphs of Figure 12.

Because of the above-discussed difficulties and uncertainties connected with

the use of those graphs, there will always be some question as to the reli-

ability of pultimate as a true measure of the collapse pressure. It is

therefore recommended that a second estimate, pultimate , be obtained by

assuming aax to be the extreme-fiber stress at the edge of the lid in the

middle of the long side, where, through Equation (9) and Figure 7, we have

fairly accurate information about the bending moment as a function of both

p and K in the small deflection regime. Accordingly, we write

6Mmax  6n Pa
2

o = mx= 1(29)max t2 t2

then substitute this expression into Equation (26) and solve for p, to obtain
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% )b (30)
Pultimate 2  6n a

as the second estimate of collap3e pressure. Because it is based on a res-

tricted search for a (a search restricted to the middle of the long edgemax

of the lid), pultimate2 is likely to be an upper bound to the true collapse

pressure. Therefore, it is advisable to select the smaller of pultimate

and pultimate2 as the governing estimate of the collapse pressure of a

brittle-material lid.

B. Ductile-Material Lids.- Collapse of ductile plates under lateral

pressure is usually assumed to occur through the formation of plastic-hinge

lines (yield lines). An analysis of a ductile lid on this basis (Ref-

erence 2) leads to the following collapse pressure:

2(m +m)

Pultimate n8 a2

where

a a 2

m 4 + 3.2 + 3.5 Q') (32)
bb

and me and m are respectively the edge and interior fully plastic bending

strengths of the lid. For a constant-thickness lid (t = t), m and m aree 'e

equal. To facilitate the use of Equation (31) a graph of Equation (32) is

plotted in Figure 13. Equation (31) is likely to be conservative, because

the strengthening effect of membrane action was not considered in its

derivation.
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V. BASE COLLAPSING PRESSURE

If the base consists essentially of one component, say Kovar or

ceramic, its collapsing pressure can be determined by the methods of the

preceding section. It often happens, however, that in a metal package the

original metal base will have a ceramic substrate bonded to it over most

of its extent, thus, in effect, forming a new base which is a two-component

composite like that shown in Figure 1 of Appendix B. It is this type of

base whose pultimate we will now estimate.

For the sake of concreteness we will take the upper component in

Figure 1 of Appendix B to be the Kovar (or other metal) and the lower com-

ponent to be the ceramic. The external pressure is therefore acting

downward upon the upper component. As indicated in the figure, the Young's

modulus, Poisson's ratio, and thickness of the upper component will be

denoted by El, vI and tl, respectively; those of the lower component by

E 2 , V2 snd t2 . The total thickness, tI + t2 , will be denoted by t.

Our basic assumptions will be that the base is a two-component clamped-

edge plate obeying Hooke's law and undergoing small deflections, and that,

in effect, collapse will occur due to cracking of the ceramic when the

maximum tensile stress in the ceramic becomes equal to the flexural strength

ab (i.e., modulus of rupture) of the ceramic.

The notation for the extreme-fiber stresses in the two components of

the plate is shown in Figure 4 of Appendix B, where the stresses are denoted

a x 1'Ox12' etc. (the logic behind the subscripts is self-evident).

Visualizing the curvatures of the clamped plate under external pressure, we

can anticipate that there are two candidates for the maximum tensile stress
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in the ceramic. They are the stress a at the middle of the long sidesx 21

(i.e., at x=O, y =b/2) and the stress a at the middle of the plate
x22

(x=a/2, y -b/2), (Under internal pressure, i.e., upward or negative

pressure, the maximum tensile stress candidates would be a at thex2 2

middle of the long sides and a at the center of the plate.) Bothx2 1

candidate maximum stresses have to be evaluated, and the larger governs.

The theory for evaluating these stresses is developed in Appendix B,

where it is shown that existing data for homogeneous (single-component)

plates can be used for this purpose. On the basis of this theory the

stress calculation consists of the following main steps: First compute

the plate flexural stiffness D and flexural Poisson's ratio v through the

sequence of equations (1) through (7) of Appendix B. Secondly, from the

appropriate line of Table I of Appendix B, evaluate the bending moments

M and M at two locations, the center of the plate and the middle of thex y

longer edges. Those bending moments apply, strictly speaking, only to the

case v = 0.3. The error will usually be very small if they are assumed

to hold also for the value of v obtained from Equation (5) of Appendix B.

However, if desired, for each location one can readily compute corrected

bending moments M' and M' from Equations (19) or (20) of Appendix B if
x y

the v yielded by Equation (5) has a value other than 0.3. Finally, with

the bending moments known for each location, Equations (17) of Appendix B

are used to calculate the candidate ceramic tensions. Specifically, the

third equation of the set (17), with M and M set equal to the bendingx y

moments or corrected bending moments for the middle of the longer sides,

will give the a ceramic stress at that location; and the fourth equation
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of the set, with M and M being those that apply to the center of the plate,x y

will give the ceramic stress a at the center of the plate. The quantities
'22

v and S required in Equations (17) will already have been determined in the

course of calculating D and v. If M = M = M, Equations (18) may be used

x y

instead of (17).

The calculation procedure just described will be demonstrated in

Section VIII. In connection with that demonstration, a suggestion will also

be made as to the handling of plastic hinges that might develop in the

Kovar if there is a small gap between the periphery of the substrate and

the walls of the package. The possibility of plastic hinges (at sufficiently

high pressures) arises because in the region of this gap the Kovar must

provide the edge bending moments of a clamped plate without any help from

the ceramic.
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Vt. LID DEFLECTION

The maximum deflection m of the lid under any pressure p will occur
max

at the center of the lid. Both the designer and the user must concern them-

selves with this deflection, in order to insure that during any screening the

lid will not come in contact with the contents of the package. In this sec-

tion we present formulas and graphs for estimating 6 . We consider sepa-max

rately the brittle-material and ductile-meterial lids. In the first case,

plasticity (departure from Hooke's law) will play a negligible role; in the

second case it will play a significant role.

A. Brittle-Material Lids.- An analysis based on the small-deflection

theory of elastic plates is carried out in Appendix A of Reference 4 and

leads to the following result:

pa" a 3

6ma= n4 LD = 12(1 - v2 ) p (a) an (33)
ma,. 4 D E t 4 (3

where n4 is the function of K and b/a plotted in Figure 14. With v taken

as 0.3, this formula reduces to

6 =10.92 2 ()an (34)
max E t 4

It is well known, however, that small-deflection theory tends to over-

estimate the deflection. Figure 15 therefore presents curves from which a

correction factor n5, based on large-deflection theory, can be estimated.

(The graphs of Figure 15 are for the same four boundary conditions as those

of Figure 12, and the earlier discussion of those boundary conditions is

pertinent here as well.) With this correction factor included, the above

formulas now read
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Figure 14, Center deflection of a uniformly loaded rectangular plate

that obeys Hooke's law with edges elastically restrained

against rotation (small-deflection theory).
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an n( z 10.92 - (A an n (35)
max E t 4 5  E t 4 5

This equation can be considered valid for brittle-material lids at all

pressures up to the lid-collapsing pressure pultimate'

B. Ductile-M!aterial Lids.- For lids of a ductile material, like Kovar,

Equation (35) will apply in the initial stages of pressure application.

When the pressure becomes high enough, however, Hooke's law breaks down

because of the initiation of plastic flow in the material. As the pressure

is increased beyond this point, the regions of plastic deformation are en-

larged and Equation (35) becomes increasingly in error on the low side.

Finally, the collapse pressure pultimate is reached, at which the lid

deflections increase virtually without limit.

The precise determination of lid deflections in a ductile lid beyond

the range of validity of Hooke's law is a difficult computational task

which will not be attempted here. Instead, a simplified model of the lid's

behavior will be proposed which will lead to an approximate estimate of the

central deflection with very little computational effort.

The proposed model breaks the entire load-central deflection history

into three rdgimes which are represented by the curve segments OA, AB and

BC of Figure 16. The first segment, OA, corresponds to linearly elastic

material behavior and it is the initial portion of the load-deflection

curve OG defined bv Equation (35). The second segment, AB, is part of the

curve DE, which is the pressure-versus-deflection curve of a simply sup-

ported linearly elastic plate subjected to increasing pressure p in con-

junction with a constant and uniform restraininp moment of m per unite

width along its periphery. And the third segment, BE, represents the

Indeterminate dcflections occurring under the collapse pressure Pultimate"
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Figure 16.-Simplified graph (OAEC) of central deflection

of ductile lid as a function of pressure.
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Thus, the model assumes an abrupt transition at A from a truly elastic

behavior (OA) to a regime AB in which the fully plastic bending moment is

developed all around the boundary while the interior of the lid still

behaves elastically, then another abrupt transition at B to a regime BC of

fully developed interior as well as exterior yield lines creating a collapse

mechanism. In actuality, gradual transitions occur from one regime to the

next, as suggested by the dashed curve, but such transitions are not included

in the present model.

In order to make use of the proposed model, one must have an equation

for the middle portion, AB, of the graph of pressure versus deflection. On

the basis of linear elastic small-deflection plate theory (Figure 14 of the

present paper and pp. 162-165 of Reference 3), the following equation can

be derived for the line DE of which AB is a part:

m a
2

6 =12(l-v
2) jP an 0 - e (6

max E ()3an 4(O) D n9  (36)

where n4(0) is the value of n4 from Figure 14 for K=0, and n9 is the fol-

lowing functions of b/a:

4- sin(mn/2) [l- sech (pub(74 bi1T2
n9 = - n m)] (3T)

-9 7 m=1,3,5.. m3 2a

The first term on the right side of Equation (36) is the central deflection

of a simply supported plate under a pressure p, and the second term is the

diminution of that deflection due to the fully plastic restraining moment

me along the boundary. Making use of Equation (1) we may rewrite Equation

(36) as

6 ax 12(_2)a pa2 n4 (O) - men9 ] (38)
--

Et3
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Figure 17.- Graph of n 4(0) as a function of a/b.
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and we note that for v=0.3, 12(1--v2) equals 10.92. To further facilitate

the use of Equation (38), graphs of n4 (0) and n9 are given in Figures 17

and 18, respectively.

On the basis of the above discussion, we can now give the following

rule for estimating the central deflection 6ma x of a ductile-material lid:

For < ultimate' 6max is the larger of 6

6 , where 6 is the deflection computedmax_ max1

from Equation (33) or (34) and 6 is the de- (39)
max2

flection computed from Equation (38). For

P>Pultimate' Smax is arbitrarily large.

VII. FLATPACKS IN A CENTRIFUGE

As part of the total screening process, packages are frequently spun

in a centrifuge in such a way that the centrifugal force tends to push

the lid into the cavity. As far as the lid alone is concerned, this

centrifugal force is equivalent to a lateral pressure of Gtd, where

d = specific weight (weight per unit volume) of the
lid material

t = thickness of lid

G = centripetal acceleration in units of g (acceleration
of gravity)

If t is in inches and d in lbs per cubic inch, the formula

Pequivalent = Gtd (40)

will give the effective pressure in psi due to a centrifuge acceleration

of G g's. Alternatively, given any pressure p, we have from Equation (40)

the following formula for the number of g's of centrifuge acceleration
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equivalent to that pressure:

G =f p  (41)
equivalent td

As an example of the use of this formula, let us consider a lid of .030 in.

thickness and .302 lb/in. 3 specific weight and ask how many g's of centri-

fuge acceleration are equivalent to a lateral pressure of 30 psi. From

Equation (41) we obtain the following answer:

G 30
equivalent = (.030)(.302) = 3310 (g's) (42)

By virtue of the equivalence relation (40), all the formulas and

graphs of the preceding sections can be made to apply to a package in a

centrifuge simply by replacing the symbol p everywhere by Ctd. In this

way, for example, the following formula is obtained from Equation (35)

for the central deflection of a linearly elastic lid of a package in a

centrifuge:

0max =10.92 () a n4 n5  (43)

where n5 is to be obtained from the graphs of Figure 15 with the abscissa

labels therein changed to Gtda4/Et4. Similarly, Equation (12) gives the

following formula for the maximum tensile stress in the seal when Gtd <p :

S Gtd (-)n (44)
max w

It should be noted that the interaction among the base, the walls,

and the lid is slightly different for a package in a centrifuge than for

the same package under hydrostatic pressure. Reference 2 discusses a

refinement in the a computation to take this difference into account.
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However, this refinement is omitted here, because the improvement will

usually not be sufficient to justify the labor involved.

VIII. NUMERICAL EXAMPLES

Here we pose and solve a number of problems in order to demonstiate

how the formulas and graphs of the preceding sections can be used.

Example I.- A wide-seal uniform-wall constant-thickness-lid Kovar

package of the type shown in Figure I has the following dimensiens (in

inches);

a=b=.92 t=t =.015 h=.125 w=.0 4 0
e

and the following material properties:

E - Ew = 20xlO6 psi v = v = .3 o 50 ksi ob = 107 ksiww yb

We wish to find the maximum tensile stress S in the seal and the centralmax

deflection 6 of the lid due to an external screening pressure p of 30 psi;

also the pressure p ultimate required to collapse the lid.

We first determine all the constants that will be needed to solve this

problem. In accordance with Equation (5a) we take a to be 2, after which

Equation (6b) and Figure 5 give

4.92 ( .01,0 )3

K= -2 _2(052 = 113 arctan K = 1.56

(The closeness of arctan K to ff/2 indicates that in effect the walls are

clamping the edges of the lid.) Entering Figures 7, 8, 13, 14, 17 and 18

with b/a 1 and arctan K = 1.56, we obtain
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n= .051 n2 = .443 n8 
= 10.7 n= .00125

n 4 (O) - .00406 n9 
= .0737

Also, for p 30 psi, we have

a = 3_ (.30/. 9 21.1

Et 4  20x06\ .015)

Since the wall cross-sectional area (wh) is only around one-third of the

lid cross-sectional area (ta) and arctan K is very close to n/2, we shall

use part (c) of Figure 15 to find

n 5 = .981

Equation (13a) gives

04 .04 2n = 6(.051) + 2(.443)(-) -( )= .343

Finally, from Equation (2),

m = m = (107,000)(.015)2/6 = 4.0125 in.-ib/in.
e

whence (Eq. (15))

m e 4.0125 93 psinla2 (.051) (.92) 2

and the right sides of Equations (35) and (38) are, respectively,

30 .92 ,
= 10.92 --- 0--) (.92)(.00125)(.981) = .0043 in.
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t x ( 0.92)( 92)2
= x [30(.92)2(.00406) - (4.0125)(.0737)]

2 (20xi06) (.015) 3

= .1369 r.1031. - .2957] = -.026 in.

We now have all the constants needed to determine the quantities we

are looking for. We start with S . Since Kovar is ductile and the
max

screening pressure p(= 30 psi) is less than the transition pressure

Pt (= 93 psi), the upper left hand box of Table 1 applies. It gives

(= 92 2
S 30(-_) (.343) = 5443 psi

as the maximum tensile stress in the seal. Tils is a safe stress if the

solder is one of the higher strength types, such as a gold-tin alloy, and

probably still safe, but with less margin, if the solder is a lead-tin alloy.

To determine the central deflection of the lid we make use of rule

(39) which states that 6max is tLhe larger of 6 max and 6 max2 Thus

6 = 6 f .0043 in.
max max1

This is 29% of the lid thickness but only 3% of the cavity depth. The fact

that 6 governed indicates that the lid is still in the linearly elasticmax1

region OA of the simplified pressure-deflection curve of Figure 16.

The collapse pressure Is given by Equation (31) as

Pultimate 
= (10.7) 2(4.0125 + 4.0125) ' 203 psi

(.92)2

which is well above the screening pressure of 30 psi.

Example 2.- Suppose that 30 psi is considered a satisfactory screening

pressure for the package of Example 1 (to be referred to as package I).
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What screening pressure would be appropriate for a second package (package

I) identical in all respects to package I except for the dimension b, which

has been increased to 3.92 in.?

For package II we still have arctan K 1.56, but

b = 1.92 a
-= 2.1 -= 48a .92 b

Figures 7 and 8 now give

nI = .083 n2 = .513

and from Equation (13a) we obtain the following value of n for package I:

.04 042
n = 6(.083) + 2(.513)(---) - (--f) .541

Then, from Equation (16),

S = (4025)(.541) = 16,346 Dsi
max t (.083)(.040)2

In accordance with the discussion preceding Equation (25), a suitable

screening pressure for package II is one that will produce the same Smlax

in its seal as 30 psi produced in the seal of package I, namely 5443 psi.

Thus, in the formulas of Table 2 we may take S to be 5443 psi. Sinceaccept

this is smaller than S max, the leftmost formula of Table 2 applies. It
t

gives the following appropriate screening pressure for package II:

5443 9p = ___ = 19 psi

-4 2)(.541)

Example 3.- Let ug repeat Example ], assuming now that the seal is a

solderless electrically welded seal of the narrow type (Figure 3(b) with
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w .010 in., and that the edge of the ltd is thined to a thickness ofs

t .004 in. while the main thickness t remains .015 in.
e

The calculations of Example 1 up to, but not including, the evaluation

of n are valid here. Since the seal is now of the narrow type, EquaLion (13b)

must be used for determining n. With w = .010 in., we have e = .035 in.,

and Equation (13b) then gives

I 42 .04)2
n [.051 -1 .3 ( .229

2 (-.92 .03) ( 010)

Furthermore, while the fully plastic bending strength m in the main part of

the lid remains 4.0125 in.-lb/in., in the thinned edge it goes down to

m = (107,000)(.004)2/6 0.2853 in.-lb/in.

according to Equations (2), whence

me 0.2853 _ 6.6 psi

n1 a (.051)(.92)2

The right side of Equation (33) remains at the value 5 = .0043 in., butmax I

the new m value changes the right side of Equation (38), so that nowe

max= (10.92)(.92)' [30(.92)2(.00406)-(.2853)(.0737)1 = .0112 in.ma2 (20 106) ( .015) 3

Proceeding as in Example 1, we note that the screening pressure

p (- 30 psi) is now greater than Pt (= 6.6 psi) and that the seal is now a

narrow one. Therefore the bottom right box of Table 1 applies, giving

.2853 1 '04 21 Bo0 psi
max (.01)(.035) 2(.051) .92
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as the maximum seal st re;, produced in the course of applying p. Since the

seal materinl in this c:,se is Kovr with an ultimate teasile strength of at

least 75,000 psi (See Section 5 of Appendix A), the 800 psi maximum seal

stress can be considered harmless to the integrity of the seal. From the

absence of p in the formulIa for S , it can also be concluded that Snml max

would be the esm, for all s, reening pressures greater than the transition

pressure Pt - 6.6 p-;i. The effect of using screening pressures greater than

6.6 psi is simply to spread the length of seal periphery over which the S
max

of 800 psi is developed.

Turning to the deflections and again using rule (39), we obtain

6 = m 2 - .0112 in.max max 2

This is 2.6 times larger than the 6 produced by the same screening pres-max

sure in the lid of Example 1, but still only a small percentage (9%) of the

total cavity dcpth.

Finally, from Equation (31.) we estimate the collapse pressure to be

Pultimate 
= (10.7) 2(.2853 + 4.0125) = 109 psi

(.92)2

which is approximately half that of the lid of Example 1.

The present example serves to show that a thinned edge and lid plas-

ticity can combine to provide a barrier against severe stressing of the seal

under external pressure, but at the same time tend to increase the lid

central deflection and reduce the lid collapsing pressure.

Example 4.- Assume that the package of Example 1 has its base changed

from Kovar to ceramic with a thickness of .025 in., a modulus of elas-

ticity of 50x10 6 psi, and a flexural strength of 65 ksi. What external

pressure Pultimate will cause the base to crack?
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We shall imagine the package turned upside down, so that the base

becomes in effect a lid with

t = .025 in. E = 50.106 psi ab = 65 ksi

and, in accordance with the discussion in Section IV A, we shall make two

estimates of p ultimate' one based on Equation (28), the other on Equation

(30), and select the smaller of the two.

We start with Equation (28), which gives

n=65),103(.92 2
n7 = 5--6 .025 1.76

as the values of n7 required to cause fracture. The extensional stiff-

ness Eat of the ceramic base is much higher than the corresponding stiff-

ness E hw of the wall. Therefore parts (a) and (c) of Figure 12 are theW

ones that apply. Assuming that the walls essentially clamp the edges of

the base* (as they do the lid), we narrow the choice further to part (c)

alone. It gives the following as the value of pa4 /Et4 needed to achieve

an n7 of 1.76 with a b/a of 1.0:

P'- 5.6
Et

4

whence the pressure required to crack the base is

5.6 Et4  (5.6)(50xI06)(.025)'  153 psi
ult1mate1  a4  (.92)1

Proceeding now on the basis of Equation (30), we first compute (Eq. (8b))

This assumption will be justified presently when arctan K is com-
puted and found to be quite close to i/2.
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K 4.92 50 .040.2
K 2 50 (0i 29 2 = 61 arctan K = 1.554

Then from Figure 7, n 1 
= .05. Therefore E)tquation (30) gives

ultimate 65,000 .02)piPutmt2 6( .-05-)- (.91 160pi

as the second estimate. This is slightly higher than the previous estimate

and is therefore not the governing one. We are left with

p ~= 153 psiPultimate = Pultimate
1

as the best estimate of the pressure required to fracture the ceramic base.

Example 5.- Suppose the package of Example 4 to be placed in a

centrifuge in such a way that the centrifual force tends to push the

ceramic base into the cavity. 'raking the specific gravity of the ceramic

to be 3.85, determine how many g's of centrifuge acceleration are required

to crack the base.

We first convert the specific gravity of 3.85 to d specific weight,

d, by multiplying it by the specific weight of water, which is .0361 lbs/in..

The result is

d = .139 lbs/in 3

The pressure required to crack the base is 153 psi, from Example 4. The

equivalence relation (41) therefore gives

G= t53 l=/in. 44,000 g's N
(.025 in.)(.139 lb/in. )

-60-



of centrifuge acceleration required Lo crack the base.

Example 6.- A stepped-wall wide-seal package with a co t-;tant-thicknc';s

Kovar lid has the following dimensions (in inches):

a - .365 b = .670 t = t = .025e

h = .082 hI = .060 h 2 = .025

w = .040 W I = .049 w2 = .071

and the following mechanical properties:

E = E = 20x406 psi (Kovar) E1 = E = 8.6x106 psi (glass)
w 1 2

V = v = 0.3 v = v2 
= 0.2

a = 107,000 psi for the Kovar lid

Deterrmine the maximum tensile stress S produced in the seal by amax

screening pressure p of 100 psi.

From Equations (1) and (3b) we have

D (20x106) (.025) 3 " _

12(.91)

D (20xl06)
(.040)3

W 12(.91) 117.5 in-b

(8.6xi06)(.049)3
1 12(.96)

= (8.6x106) (.071) 3

2 = 12(.96) 267 inrlb
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Then Equation (b) gives

2
O, 

=  hl,- D h-

i - + h-K _I) Y

2

060 2 + 117.5F(.60)2 (.025 )], 117.5 ._22 5 2

k.082.) 8. L".082! .082) 267 \.082!

1.82

whence (Equation (6a) and Figure 5)

K 4 .365 -!.5... (1.82) = 11.1 and arctan K = 1.48
2-.082 28.6

From the given dimensions we have

a-_65 = .55 b 1.83

b .670 a

Entering these values, together with arctan K = 1.48, into Figures 7 and 8,

we find

nI = .074 n 2 = .515

From Equation (2), m = in = (107,000)(.025)2/6 = 11.146 psi, whence

me 11.146
Pt =----A = 1131 psipt nlIa 2 (.074)(.36 5) 2  13 s

Since this is greater than the screening pressure of 100 psi, the upper

left hand box of Table 1 applies, giving
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n = 6(.074) + 2(.515)(4) - )'040) 5

and
365 2

S = (100)(-65) (.545) 4540 psi

Example 7.- Let us assume that a Kovar case has a ceramic substrate

bonded to its base over virtually the entire extent of the base, creating,

in effect, a two-component plate like that of Figure 1 of Appendix B. We

shall consider the upper component to be Kovar with the properties

E1 = 20 x 10
6 psi VI = 0.3

I 0.015 in 0b = 107,000 psi

The lower component will be the ceramic with the following assumed properties:

E2 = 50 x lO6 psi v2 = 0.22

t2 = 0.025 in. ab z 65,000 psi

Assuming clamped edges and a square base of internal dimensions

a = b = 0.875 in., and using the procedures described in Section V, let us

calculate the maximum tensile stress produced in the ceramic by an external

pressure of p = 50 psi and judge whether or not it is likely to crack under

that pressure.

Visualizing the curvatures produced in the base by the external pres-

sure, we can expect that there will be two candidates for the maximum tensile

stress in the ceramic. They are the extreme-fiber stress a at the
x22

center of the base and the stress a near the interface at the middle ofx2 1
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the edges x = 0 and a. (Inasmuch as the base is square and clamped all

around, a at the center and o at the middle of the edges y = 0 and

b would be equally good candidates.) The calculations leading to these

stresses must start with Equations (1) through (7) of Appendix B, from

which we find that

DI = .015) 6.181312 [1 - (. 3)2 1

(50 x106 )(.025)3= 68.4155

12[1-(.22) ]

2 (20 x 106) (.015) (50 x 106)(.025) . 24194 x 106

(20 x10 )(.015) + (50 x10 )(.125)

= .3(50 x106)(.025) +.22(20 x0 6)(.015) = 0.285

(50 x 10 025) + (20 x 10 6 ) (.015)

26(.015+.025) .24194 x106
D3 = 4 (.285)2 105.332

D = 6.1813 + 68.4155 + 105.332 = 179.929

D' = (. 30) (6.1813)+ (.22) (68.4155) + (. 285) (105. 332) = 46.925

v = 46.925/179.929 = .261

We turn now to the calculation of a at the center of the base. For
x22

a square plate (b/a = 1), Table I of Appendix B gives the central bending

moments

2I
M x M = .0231 pa
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if v - 0.3. Inasmuch as v was found to be actually U.261, we will calculate

corrected values M ' and M ' of these bending moments. We may use Equa-x y

tion (20) of Appendix B for that purpose, since M = M . It givesx y

M 'I = Myl ' 1+.261 (.0231 pa
2) = .0224 pa2

x y 1.3

which, we note in passing, is only 3% different from the 'incorrected value

2
of .0231 pa .Substituting p = 50 psi and a = .875 in., we obta1in

- H ' .0224(50)(.875) .8575 in.-lb/in.x y

for the bending moment intensities at the center of the base.Equations (18)

of Appendix B are the stress equations that may be used when the bending

moments M and M are equal. From the last equation in that group we find
x y

that

= a .8575 (.24194 x106)(.040) (50 16 )(.025)
x22  Y2 2  (179.929)(I +.261) L 2(.025) (1 - .285) 2(i-.22)

= 4050 psi

For the other candidate maximum stress, namely o at the middle ofx2 1

the edge x = 0, we start with the following data from Appendix B, Table 1,

for v = 0.3:

2 2
M M -. O513 pa M = -.0154 pa

x y

To correct for the fact that v = .0261, not O., we must now use Equa-

tions (19), inasmuch as M and M are not equal. They give
x y-5
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M ' -9- HI- .3(.261)](- .0513) + (.261- .3)(- .0154)) pa2
x .91

2
- .0513 pa

M -- .9{[I- .3(.261)](- .0154) + (.261- .3)(- .0513)} pa 2

2
= - .0134 pa

whence

= - 2
H ' - .0513(50)(.875) = - 1.9638 in.-lb/in.

12
M ' - .0134(50)(.875) = - 0.513 in.-lb/in.y

Substituting these values for Mx and My, respectively, in the third of

Equations (17) of Appendix B, along with

1 - vv = 1 - (.261)(.285) = .9256

1 - vV2 = 1 - (.261)(.22) = .9426

v - v = .285 - .261 = .024

2 - v = .22 - .261 = - .041

2 2
1 - V = 1 - (.261) = .9319

1 - = - (.285) 2 = .9188

1 - V 2
2 = 1 - (.22)2 = .9516

we obtain
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(24194 x 106 )(.04) (- l.9638)(.9256) +(- .513)(.024)
X 21  2(.025) (179.929)(.9319)(.9188)

(50 x106 )(.025) - 1.9638)(.9426) +(- .513)(-.041)
2 (179.929)(.9319)(.9516)

- 2299 + 7168

= 4869 psi

Thus, the two candidate maximum tensions in the ceramic are 4050 psi

and 4869 psi, and the governing one is the latter. It is well below the

given breaking stress of 65,000 psi for that ceramic. We therefore tenta-

tively conclude that there is no danger of the ceramic substrate cracking

under the given external pressure of 50 psi.

Before accepting this conclusion as final, let us compute the center

deflection of the base due to the 50 psi external pressure, in order to

satisfy ourselves that the small-deflectton assumption, on which all of the

above calculations are based, is valid. From Table 1 of Appendix B we have,

for b/a = I,

4!
6 = .00126 p a4- = (.00126)(50)(.875)4 .00021 in

D 179.929

and this is indeed very small compared to a, b and t.

A word of caution may be in order at this point: A ceramic substrate

bonded to a package base would not ordinarily extend all the way to the

walls of the package. Instead there would generally be a small gap between

the periphery of the substrate and the package walls. This means that

those edge bending moments in the base that are transmitted from the base to

the wall must be borne by the Kovar alone, rather than by the Kovar-ceramic
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composite, and there Is therefore a possibility that the edge bending moments

developed by a given pressure might exceed the fully plastic bending strength

m of the Kovar. This would result in plastic hinges developing alonge

portions of the edges of the base, which would invalidate the assumption of

clamping.

In the present example, this possibility does not pose a serious problem:

For the given modulus of rupture of ab 107,000 psi for the Kovar, we obtain

S bt 2  07000)(015)2 401 in.-lbe 6 6 in.

as the fully plastic bending strength of the Kovar edge of the base, and

this is much larger than the calculated actual edge bending moment of

1.9638 in.-lb/in. Therefore the edges of the base can still be considered

to be clamped under the 50 psi external pressure, thus validating the cal-

culation procedure that has been used. In fact, by scaling, we may conclude

that the calculation procedure would be valid for pressures up to

4.01
1.9638 xS0 102 psi

This is the pressure at which plastic hinges will first start to form in the

Kovar at the midpoints of the sides of the base, if there is a gap between

the periphery of the ceramic substrate and the walls of the package.

If the pressure is increased beyond 102 psi, the plastic hinges will

gradually lengthen, and the base will depart more and more from the condition

of a clamped plate. There will be no further increase in the values of M
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and M at the middle of the edges x = 0 and a, inasmuch as M is at its
y x

maximum value of m and M at its maximum value of vin, but the bending

moments at the center of the base will continue to increase.

There seems to be no easy way to estimate ceramic stresses once the

Kovar plastic hinges have started to form in the gap between the edge of

the substrate and the walls. However, a rather rough but conservative

approach to this problem can be suggested: Assume that the base behaves

as a simply supported plate with regard to any increments of pressure

beyond the pressure p at which plastic hingeing initiated (i.e., beyond

102 psi in the present example); therefore for any pressure p > p0

find the stresses in the ceramic by superimposing the stresses at p = po

in the clamped plate and the stresses due to a pressure of p - p in the

simply supported plate. The latter stresses can be obtained using Table 2

of Appendix B, instead of Table 1. (They will, of course, be zero at the

edges.) In adapting this approach to non-square plates, Table 3 will be

more appropriate than Table 2 if plastic hinges have not yet formed along

the short edges.

IX. EXPERIMENTAL CONFIRMATION AND INFERRED GLASS STRENGTH

According to Equation (22) the following relationship should exist

between the pressure per causing loss of hermeticity under a ductile lid

and the ultimate tensile strength Sult of the seal material, as long as

Per < P t :

2 -l

Pcr "St [(a) nl (45)
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Thus, given a family of different packages all having the same seal material

and the same quality seals, the graph of pcr versus [(a/w) 2n] - I should

theoretically be a straight line through the origin (admitting only

Pr' s that are less than pt ) . In Reference 2 experimental data are

presented which tend to confirm this theoretical conclusion.

The data were furnished by a package manufacturer. They involved 579

packages distributed among eighteen groups, with the packages nominally

identical within each group. The packages had three-segment stepped-type

walls, as in Figure 2(b). The top segment was a Kovar seal frame; the two

lower segments were glass beads sandwiching a lead frame. The lids were

Kovar and were sealed to the wall by means of a gold-tin solder preform.

Each group of packages was placed in a pressure bomb and subjected

to external air pressure that was increased in increments of 5 psi or

10 psi. Each new pressure was held for approximately 10 minutes, after

which the packages were tested for gross leaks by submerging them in a

heated liquid and watching for bubbles emanating from the interior of the

package. Consistently the bubbles were seen to emerge from under the

lids in the middle of a longer side. The leakers were removed from the

group and the rest of the group was then subjected to the next higher

pressure. This process was continued until all the packages had been

made to leak.
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Thus, for each package an experimental value of pcr was obtained.

From the dimensions and elastic constants of the package components a

value of the package parameter f(a/w)2n - 1 was also computed for each

package group, so that for each package group the mean p cr of the group

could be plotted against the package parameter. The plotted points fell

reasonably close to a straight line through the origin, thus tending to

confirm the validity of Equations (45) and (22).

From the slope of this straight line, the average tensile strength

Sui t of the seal material could be inferred (see Eq. (45)) and was found

to be 8450 psi. Inasmuch as the gold-tin solder between the lid and seal

frame was undoubtedly stronger than the glass underneath the seal frame,

this value of 8450 psi can be taken as an estimate of the mean tensile

strength of the glass in the walls of these packages.

Using Equation (45) an inferred Sui t was computed for each of the

579 packages individually. The lowest inferred glass strength was

3400 psi, occurring in only one package. Only 14 packages (2.4%) had

inferred glass strengths below 5000 psi. The highest inferred glass

strength was 18,000 psi. These inferred strength values and their vari-

ability are consistent with the discussion of glass tensile strengths

in Section 4 of Appendix A.
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The cumulative distribution of inferred glass strengths for the

individual packages is given in the following table:

S, psi Percentage of packages
having inferred Sul t < S

2,700 0

3,400 .17

4,000 .17

4,500 .62

5,000 2.4

5,500 6.7

6,000 12.8

7,000 26.8

8,000 47.1

9,000 62.5

10,000 79.1

11,000 89.7

12,000 95.1

13,000 96.4

14,000 96.9

15,000 97.6

16,000 98.3

17,000 99.4

18,000 100
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X. REMARKS

In this chapter formulas have been presented, related to the mechani-

cal behavior of microelectronic flatpacks under external pressure, that

can assist in the design of such packages or in the selection of suitable

screening pressures for testing their hermeticity.

The specific items covered by the formulas are: maximum tensile

stress in the lid-to-wall seal (or seal-frame-to-glass-wall seal),

central deflection of the lid, pressure required to crack or collapse the

lid or the base, and the equivalence of external pressure and centrifuge

acceleration insofar as lid behavior and seal stresses are concerned.

Numerical examples have been presented to illustrate)the use of the

formulas, and experimental data have been referred to which tend to confirm

some of the formulas and hypotheses related to loss of hermeticity under

external pressure.
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Chapter 2 - CONSTANT ACCELERATION

Constant acceleration in a centrifuge is one of the standard tests

to which microcircult packages may be subjected (e.g., see Method 2001.2

of Reference 1). Microelectronic devices in rocket-launched equipment may

also experionce periods of constant or nearly constant acceleration during

the launch.

Depending on the orientation of the package in relation to the inertia

loading (the centrifugal force, in the case of the centrifuge), this

environment can produce stresses and deflections in the lid or base, ten-

sions in the internal wires and their bonds, flexure and torsion of the

internal wires, and tension or shear in the chip-to-substrate and substrate-

to-package attachments. In this chapter, which is based for the most part

on Reference 7, the magnitudes of these effects are assessed, especially

with a view toward evaluating the effectiveness of the centrifuge as a

stressing device for screening purposes.

In that part of the study related to the tensile stressing of internal

wires and bonds, the extensibility of the wire is taken into account; this

is a factor that is usually negligible but that can be important for wires

with small initial loop height. The wire stressing capability of the pull

test is also evaluated (again with wire extensibility taken into account),

in order to provide a standard against which the effectiveness of the

centrifuge can be measured.
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I. WIRE AND WIRE BOND TENSIONS

In this section we assume the package so oriented in the centrifuge

that the centrifugal force tends to pull the wire away from the base,

creating a stress condition in the wire that is primarily tensile. In

Section IV we will assume a different orientation, one in which the

centrifugal force acts parallel to the base of the package and normal to

the plane of the wire loop, so that the primary mode of stressing in the

wire is flexure, with a very small amount of torsion.

A. Nomenclature and Physical Constants.- We consider a wire (Figure 1)

that spans a horizontal distance S and, in its unstressed state,has a

length of L and a cross-sectional area of A. Its Young's modulus and0

unstressed specific weight will be denoted by E and y, respectively, and

the assumed values of these constants for two common wire materials are

tabulated below (Table 1).

Table i.- Properties of Gold and Aluminum

Gold Aluminum

E (psi) 12 x 106 10 106

y (Ib/in. 3 )  .7 .1

A parameter that will be needed later is the "excess-length parameter"

R, defined as follows:

L -S L
R= 0 or I + R (1)S or --

--
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Figure I. Unstressed witre In a catenary or bilinear shape.

/T

LL'

figure 2.- Graphs relating exccss-iengrh parameter R and dimensionless loop-

height parameter H/S.

G ~ ~ ~ ~ A V6IrL ~ gfr#, L..

figure 3.- t.ire As stre,.svd in a centrifuge or pull test. (lashed lines
repIresent uitrenned wire.)
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in principle, R can be determined by measuring L and S and subsLituting0

their values in Eq. (1). However, L may be rather difficult to measure.0

Much easier to estimate is the loop height H when the unstressed wire is

in the curved (assumed to be catenary) shape of Figure 1(a) or is gontly pulled

into the bilinear shape of Figure l(b) (the two values of Hi for a given

wire will of course be different). Therefore, graphs are provided in Figure 2

from which R can be determined if the dimensionless loop-height parameter

H/S is known for either of these two shapes. The curves in Figure 2 can

be accurately approximated by the following equations if H/S is less than

0.2:

R = 8(ll/S)2 (lower curve) (2)3

R = 2(H/S) 2  (upper curve) (3)

It will be noted that R is usually of a much smaller order of magnitude

than H/S.

Under its distributed inertia loading in a centrifuge or its concen-

trated loading in a pull test, the wire will develop a stressed length of L

and will exert forces of magnitude T on its bonds (Figure 3). The corres-
0

ponding maximum nominal tension stress in the wire will be

a = T /A (4)0

occurring at the ends.

The magnitude of the inertia loading in a centrifuge test will be char-

acterized by the parameter G, defined as the nunber of g's (g = acceleration I6

of gravity) of centripetal acceleration that the wire is experiencing. The
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intensity of the loading in a pull test will be described by the magnitude

P of the pulling force shown in Figure 3(b). Both loads are assumed to be

so oriented as to maintain the wire in a symmetrical shape.

B. Wire Strcs in a CentrIfuge Test.- The stress analysis of a wire in

a centrifuge test, taking extensibility into account on the basis of Hooke's

Law, and assuming negligible bending stiffness, is carried out in Reference 7.

The results are summarized in Figure 4, where the dimensionless wire-stress

parameter T /AE is plotted as a function of the dimensionless inertia-0

loading parameter GIS/E for different values of the excess-length parameter

R. For any given test one would know the value of the abscissa. For that

abscissa the ordinate value of T /AE would be read from the appropriate R0

curve. Multiplication of the T /AE value by the known value of AE or Eo

would give the bond force T or the maximum wire stress T /A.o 0

To facilitate the use of Figure 4, two "bench-mark" values of the

abscissa, corresponding to certain test conditions, are indicated by arrows.

Since the abscissa is directly proportional to G and S, it is easy to

compute its value in any test of a gold or aluminum wire by multiplying one

of the bench-mark values by appropriate ratios.

A bench-mark ordinate is also marked on Figure 4 which indicates that

T /AE = .001 corresponds to a maximum tensile stress of 10,000 psi in

aluminum wire and 12,000 psi in gold wire. The gold and aluminum wire

stresses associated with any other To/AE value, say (To/AE)I, can be

found by multiplying the above stresses by the ratio of (T /AE) to .001.
0 1
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In order to judge whether or not a certain wire stress, a = T /A, is
0

significant, one could compare it with the ultimate tensile strength a of

the material. This varies greatly with the manufacturer and the temper of

the wire. Typical values are given in Table 2 below for small diameter wires

(1.5 mils and less). Manufacturers' guaranteed values may be lower than the

ones in the table.

Table 2.- Typical Values of a (psi) for Wire

Gold Aluminum

Annealed
Temper 25,000 37,000

HardTr 60,000 60,000TemperII

Whether or not wire extensibility has a significant effect on the stresses

can be judged from the slopes of the curves in Figure 4. A slope that is

45* or nearly so indicates that wire extensibility has a negligible effect.

Where the curves have such a slope, T /AE is proportional to GyS/E; then

T and T /A are actually independent of E. Where the slope is significantly

different from 4 5b
, wire extensibility has a significant effect; this happens

for the smaller values of R when GyS/E is sufficiently high.

Figure 4 is based on the assumption that the wire material obeys Hooke's

law. Therefore, strictly speaking, any data obtained from that figure are

valid only if the maximum stress, o = T /A, is below the proportional-limit
0

stress a associated with the point P of the stress-strain curve whereP

stress stops being proportional to strain (see Figure 5). If the stress

o - T /A falls above point P, say at Q, the curves of Figure 4 will still0

be approximately correct provided that E in the ordinate and abscissa
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Figure 5.- Tensile stress-strain curve for a ductile material.
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Figure 6.- Actual and idealized stress-straii curves for hard-temper wire.



labels is changed to E , where E Is the secant modulus associated wichS S

the stress a = T /A (see Figure 5). The approximation becomes
0

better as H/S becomes smaller, for then the stress is more nearly constant at

the value a along the entire length of the wire. Since E is itself as

function of u, it is clear that trial-and error calculation will be required

to determine c when a > U
p

For hard-tempered wires it may be permissible to idealize the actual

(curving) stress-strain curve to a bilinear form, as in Figure 6. Then

Figure 4 would be valid without modification for all a's up to a
U

C. Wire Stress in a Pull Test.- The pull test of Figure 3(b) is

analyzed in Reference 7and the results are given in Figure 7 by graphs that

are similar to those in Figure 4. The dimensionless loading parameter in

this case is P/AE, and three "bench-mark" values of this parameter are indi-

cated, corresponding to minimum pre-seal pull strengths specified for test

condition D in Table I of Method 2011.2 of Reference 1.

As indicated in Figure 7, R = .155 represents a dividing line. For

wires with less excess length (which is the usual case) the bond force T0

will be greater than the pull force P, while for wires with more excess

length the opposite will be true.

As in the case of Figure 4, the more the slope of a curve deviates

from 450, the more significant is the effect of wire extensibility. Also

as in Figure 4, the curves of Figure 7 can be used for a - T /A > ap

provided that the Young's modulus E is replaced by the secant modulus E

associated with the stress a. In fact, this procedure is more accurate
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in the present case, because the wire stress is constant along the entire

length of the wire in the pull test, whereas it is only approximately so in

the centrifuge test.

D. Comparison of Centrifuge and Pull Test.- A comparison of Figures 4

and 7 shows that the centrifuge is generally much less effective than the

pull test in stressing wires and wire bonds. For example, let us consider

the three bench-mark pull tests of Figure 7, which, as already noted, repre-

sent minimum required pre-seal pull strengths specified in MIL-STD-883B.

Supposing R to be .03, which is a reasonable value, we find that all of

those pull tests produce tensile stresses exceeding 10,000 psi in aluminum

wires or 12,000 psi in gold wires (T /AE = .001). On the other hand, for
0

the same R the three bench-mark centrifuge tests of Figure 4 produce

T /AE values of .0001 and .00026, implying wire stresses that are at most

10% and 26% of those produced by the pull tests.

In order to achieve a stress of 10,000 psi in an aluminum wire with

R = .03 at 40,000 g's, Figure 4 shows that the span would have to be one

inch. To achieve 12,000 psi at 30,000 g's in a gold wire the span would

have to be four-tenths of an inch. Since such large spans are unlikely to

occur in practice in microelectronic devices, and since centrifuge accelera-

tions exceeding 30,000 or 40,000 g's are difficult to achieve and may be

destructive of other package components, it appears that the centrifuge will

generally be incapable of producing wire stresses comparable to those pro-

duced in the MIL-STD-883B pull tests. A similar conclusion was reached by

other investigators (see, for example, Reference 8).

A more thorough comparison of the centrifuge and pull tests can be made

by comparing the GyS/E value from Figure 4 and the P/AE value from

Figure 7 for many selected combinations of R and T /AE. Each such compari-
0
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son will give us a pair of tests (ote centrifuge, the other pull) that are

equivalent in the sense that they will produce the same stress in a wire

with the given value of R. Such comparisons show that the ratio r of the

equivalent load parameters, that is,

P/AE P (5)
GYS/E - GySA

depends on R but is virtually independent of T /AE. The results of theo

comparisons can therefore be put in the form of a single curve, Figure 8.

Using Eq. (5) in the form

P = rGySA or G = P/rySA (6)

and taking r from Figure 8, one can readily find the P of a pull test

that will stress any wire and its bonds as severely as a given number (G)

of g's in a centrifuge test. Conversely, given the P of a Dull test, one

can find how many (G) g's of centrifuge acceleration will be equivalent

in severity to that pull test.

For wires without excessive loop height, R will usually be close

to zero. Then r may be taken as 0.59 with little error, and the

equivalence relation (6) will becomnc

P = .59GySA or G = P/.59ySA (7)

To illustrate the use of this result, let us ask what centrifuge acceleration

is equivalent to a 3-gram pull on a 1-mil diameter gold wire with a 100-mil

span. From the given data we have
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P - 3(.002205) = .006615 lb

y - .7 lb/in.
3

S = .100 in.

A = - (.001)2 = .785 - 10 - 6 in.
2

4

Substitution of this information into the second form of Eq. (7) gives

G = .006615 204,000G=.59(.7)(.1)(.785 x10 - b) = 20,0

Thus, 204,000 g's of centrifuge acceleration would be required to produce

the same wire and bond stresses as the given pull test. This is an

impractically high value.

II. CHIP AND SUBSTRATE ATTACHMENT STRESSES

A. Conventional Bonding.- The rectangular parallelepiped in Figure 9,

of dimensions a, b and t and specific weight y, represents a chip

bonded to a substrate, or a substrate bonded to a package base. The two

vectors represent two possible orientations of a centrifugal force that

might tend to cause separation of the object from the thing to which it is

attached. In either case the magnitude of the force is

Gyab t (8)

where G is the number of g's of acceleration of the object. The corres-

ponding nominal stress in the bond, obtained by dividing (3) by the gross

bonding area, ab, is
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S nomi nal y

and this is either a tensile or a shear stress, depending on the orientation

of the pack-ige in the centrifuge. If there is a "voids ratio" V in the

bond, the net bond area will be (1 - V)-ih, and the actual mean stress in

the bond will be

Sactual 1-V (10)

On the basis of Eq. (10) we can investigate the likelihood of the

centrifuge producing separation of a poorly bonded substrate. For

this purpose let us set G at 50,000, which is Reference 8's estimate of

the largest number of g's one can conveniently and safely use, and set y

at .140 lb/in.3 (3.89 grams/cc), which corresponds to one of the denser

substrate ceramics. With this input, Eq. (10) gives the stress versus

thickness relationship shown in Figure 10. Figure 10 can be used for other

values of G and y by simply multiplying the ordinate values by

G .- L- (11)
50,000 3.89

where y is the specific gravity (i.e., the density in grams/cc). Thus,

for silicon chips (y - 2.4) tested at 50,000 g's, one should multiply the

ordinates of Figure 10 by 2.4/3.89, or .62.

From Figure 10 we can conclude that 50,000 g's of centrifuge accelera-

tionare not likely to significantly stress a silicon chip attachment, even

if the voids ratio is very large. For example, considering a chip thick-

ness t of 6 mile and a voids ratio V of 90 percent, we obtain a bond

stress of only
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Figure 10. bond stress for 3.89 grams/cm3 substrate at 50,000 g's. (For
silicon chip of 2.4 grams/cm3 density, multiply ordinates by
.62. For G g's, multiply ordinates by g/50,000.)
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Sactual = (420)(.62) = 260 psi

Since bond strengths are measured in thousands of psi for most bonding

materials, the developed stress of 260 psi is not likely to cause separation

of this poorly bonded chip.

The situation is slightly better in the case of a ceramic substrate,

because of its greater thickness. For example, a substrate of 50 mils thick-

ness with a voids ratio of 0.9 will develop a bond stress of 3500 psi, and

this might be sufficient to cause separation for some bonding materials. It

should be remembered, however, that this result is predicated on the assump-

tion of 50,000 g's of centrifuge acceleration. As discussed in Section III,

such high accelerations may be unusable for the larger size packages because

of their destructive flexural effect on the lid or base.

B. Face-Down Bonding.- If a chip is bonded face down to a few

pedestals or bumps, there is effectively a high voids ratio and there-

fore some hope of creating significant bond stress, despite the small mass

of the chip. When dealing with such chips, the pedestal area is somewhat

uncertain, and it may therefore be more appropriate to study the force B

per bump, rather than the bond stress, per se. Dividing the total inertia

load (8) by the number of bumps, N, we obtain the following formula for B:

B.Gyab (12
N (12) I

N

To study the implications of this formula, let us consider the following

specific case, based on data in Reference 9:
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y 2.4 grams/cc (silicon)

a - b - 40 mils

t - 6 mils

N = 10 bumps

Then the chip volume is

abt = (.040)(.040)(.006)in.
3 = 96 x 10 - 7 in.3 = 157 x 10 - 6 cm3

and for a 40,000-g centrifuge acceleration, Eq. (12) will give

B (40,000)(2.4)(157 x 10- 6  1.5 grams (13)
10 r

as the force per bump. Approximating the contact surfaces as circles and

estimating their diameters to be between .0010 in. and .0018 in., we can

compute from the above result the following possible range of stress in

the bond:

Sactual = 4210 psi to 1300 psi (14)

For such a chip, Method 2011.2 of MIL-STD-883B (Reference 1) speci-

fies a required strength of 5 grams per bump. Thus, the 1.5-gram force

obtained in Eq. (13) can be considered to be at the threshold of signi-

ficance, but not severe enough to be equivalent to the MIL-STD-883B

requirement. The stress values of Eq. (14) are also at the threshold

of significance. One can scale up the results in Eqs. (13) and (14) by

increasing G, but the remarks at the end of the previous section regarding

the danger of high G's are equally pertinent here.
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III. LIDS AND BASES OF RECTANGULAR FLATPACKS

As discussed in Chapter 1, an acceleration of G g's normal to the

lid or base of a package is equivalent to a uniform lateral pressure

p of the following magnitude:

As discussed in Reference 2, an acceleration of G g's normal to

the lid or base of a package is equivalent to a uniform lateral pressure

p of the following magnitude:

p = Gyt (15)

where t is the thickness of the lid or base and y is the specific

weight of its material

The equivalent pressures given by Eq. (15) can indeed be significant,

as the following example will show: Take G = 15,000, y = .140 lb/in.

(ceramic), and t - .025 in. Then the equivalent pressure is

p - (15,000)(.140)(.025) = 52.5 psi

This is in the range of pressures specified for hermeticity testing in

method 1014.2 of Reference 1. Such "pressures" can be expected to produce

the following significant mechanical effects, as discussed in Chapter 1:

(a) Flexing of the lid, leading to bending moments in lid-to-

wall seal which tend to aggravate defects in that seal. This

effect is most pronounced in the middle of the longer sides.

Equation (15) assumes the lid or base to be of a single material. In

the case of a two-component base (e.g., a ceramic and Kovar combination),
yt should be replaced by r, the weight per unit area of the base.
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(b) Collapse of a ductile lid and cracking of a ceramic lid or

base. The likelihood of these effects increases as the package

size goes up.

Another effect, not discussed in Chapter 1, is the following:

(c) Flexing of the base, which induces interlaminar shear stress

in the bond between the base and a substrate attached to it,

or between a substrate and a chip attached to it. These shear

stresses, which are analogous to the "VQ/l" shear stresses of

beam theory, can be more significant than the ones induced

directly by the inertia loading and which were discussed in

Section I.

Thus, it appears that centrifuge acceleration can produce significant

flexural effects on the lids and bases of flat-packs, thus simulating the

flexure produced by lateral pressure, constant acceleration as in a cannon-

launched device, squeezing of the package during normal handling, or flat-

wise impact due to accidental dropping of the package onto the floor (see

Chavter 3).

However, although the centrifuge is capable of the above important simu-

lations, it is not necessarily to be recommended for that purpose. The same

flexural actions can be produced with less difficulty by placing the package

in a closed vessel which is then pressurized or evacuated. In this way the

troublesome problem of properly supporting the package in the centrifuge is

avoided. At the same time, if external pressure is used, one has accomplished

the first step of a gross leak test for hermeticity. (The follow-up step
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would consist of inserting the package into a warmed fluid bath and watching

for bubbles.) One sacrifices only the capability of exerting more than

14.7 psi of outward effective pressure on a lid or base, capability which

the centrifuge has in principle if the complicated support problem can be

overcome.

IV. WIRE FLEXURE

In Section I the wire stressing effectiveness of the centrifuge was

evaluated for the case in which the centrifugal force tends to pull the

wire away from the base, i.e., to stretch the wire. In the present section

we consider the package so oriented in the centrifuge that the centrifugal

force acts parallel to the base of the package and perpendicular to the

plane of the wire loop. With this orientation, flexure, rather than exten-

sion, is the primary stressing mode, with the maximum bending moments in

the wire occurring at its ends.

The determination of the maximum flexural stress is straightforward if

one assumes the wire to be linearly elastic and to have the shape of a

circular arc, for then the theory in pp. 364 and 365 of Reference 20 is

immediately applicable. For an H/S ratio of .076 it leads to the following

formula for the maximum extreme-fiber cross-sectional bending stress o(psi)

in the wire:

a = .7GS 2y/d (16)

where G is the number of g's of centrifuge acceleration, S is the wire

span (in.), d the wire diameter (in.), and y the specific weight of the
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wire material (Ib/in. ). Although Equation (16) was obtained for an H/S

ratio of .076, it may be used for all H/S ratios from 0 to 0.13 with an

error of less than 5%.

Wires can tolerate a higher stress in flexure than in tension, inas-

much as the flexural stress is localized at the extreme fibers. Taking

a - 20,000 psi to be a flexural stress that sound wires should reasonably

be able to withstand (this is about 1/3 the ultimate tensile strength of

gold and aluminum wires in the hard temper), we can use Equation (16) to

calculate combinations of G, S and d leading to that stress. The results

of those calculations are given in Figure 11. From it we see, for example,

that 10,000 g's suffice to produce 20,000 psi flexural stress in gold

wires of .001-in. diameter with spans of .064 in.

On the other hand, 10,000 g's of acceleration applied to aluminum

wires of the same diameter would produce flexural stress exceeding

20,000 psi only in wires of 0.17-in. span or longer.

Equation (16) shows the flexural stress to depend on the square of

the span S, which implies that centrifuge accelerations required to

adequately stress the shorter wires could easily overstress the longer

wires. Therefore the choice of a G-level should be governed by the longest

wires in the package. In other words, it may be necessary to accept an

understreszing of the shorter wires for the sake of not damaging the longer

wires.
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rigure 11- Combinations of span S, diameter d. and centrifuge acceleration C
loading to extreme-fiber flexural stress of 20,000 psi in gold
and aluminum wires. (G - number of g's of centrifuge acceleration.
Centrifugal force is perpendicular to the plane of the wire loop.)
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V. REMARKS

In this chapter we have assessed the capabilities of the centrifupe as

a stressing device for the following microelectronic components: wires and

wire bonds, chip and substrate attachments, lids and bases of rectangular

flat-packs. The conclusions to be drawn from this study are as follows:

(1) The centrifuge is of marginal utility for the tensile stressing of

wi:es and wire bonds, because of the low mass of these components and pos-

sible strength limitations of the package. (2) For the same reasons, the

centrifuge is of marginal (or less) utility for stressing normal chip-to-

substrate attachments. (3) However, the centrifuge might be capable of

producing significant bond stresses in chips which are bonded to a few

pedestals or bumps, as in face-down bonding. (4) The centrifuge might

also be capable of producing significant stresses in substrate-to-package

bonds. (5) The centrifuge can produce significant flexural stresses in

lids and bases of the larger flat-packs, but these effects can be more easily

produced by hydrostatic pressure. (6) The centrifuge can produce signi-

ficant flexural stressing of gold wires if the centrifugal force acts

parallel to the base and perpendicular to the plane of the wire loop.

The following is a listing of the main quantitative results presented

in this chapter.

(a) Figures 4 and 7, which embody the results of the stress analyses

of a wire in a centrifuge or pull test, taking the extensibility

of the wire into account. (The wire extensibility effect, which

has been ignored in prior analyses, is usually not important, but

it can become important if the wire has very little or no initial

slack.)
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(b) Figure 8, which enables one to determine pull tests and centri-

fuge tests that are equivalent insofar as their stressing of

wires and wire bonds is concerned.

(c) Equation (7), which epitomizes the above equivalence information

into a simple formula that is valid for wires of normal loop

height.

(d) Figure 10, which enables one to estimate centrifuge-induced bond

stresses in chip-to-substrate and substrate-to-package bonds as

a function of the fraction V of voids in the bonding area.

(e) Equation (12), which enables one to estimate the centrifuge-

induced force per pedestal for chips which are bonded face down

to a few pedestals or bumps.

(f) Equation (15), which enables one to determine hydrostatic pres-

sures and centrifuge accelerations that are equivalent insofar

as their flexing of the lids and bases of flatpacks is concerned.

(g) Equation (16), which gives the extreme-fiber flexural stress

for the case in which the centrifugal force acts parallel to

the base and perpendicular to the plane of the wire loop.
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Chapter 3 - FLArdISE IMPACT

In this chapter we consider a horizontal flatpack falling vertically

and impacting upon a horizontal rigid surface, so that its motion is

arrested in an extremely short time, and we investigate some of the

stresses resulting from this rapid deceleration.

In particular, in Section I we consider the package falling with an

upside-down orientation, so that the arrest of the motion will produce

tension in the internal wires and wire leads. In that section we provide

formulas and graphs that can be used to estimate the maximum wire tension

as a function of the impact velocity and the arresting time, thereby

enabling one to judge if the tensions achievable are significant enough

to make the flatwise upside-down drop test a practical screen for the

internal wires in closed packages. The wires are assumed to obey Hooke's

law.

In Section II, theory is provided for estimating the flexural stresses

in the base of the package undergoing the flatwise upside-down drop test.

With the aid of this theory one can tell whether or not the impact velo-

cities high enough to produce significant stressing of the internal wires

will at the same time be too severe (i.e., damaging) for the package base.

In this section also Hooke's law is assumed to hold.

In Section III the flexural response of the package lid in a right-

3ide-up drop test is discussed.

Finally, in Section IV the question of feasibility, of the upside-down

flatwise drop test as a mechanical screen for the internal wires in closed

packages is discussed, and a type of apparatus for such a test is described

which merits investigation.
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Although the discussion and results presented in this chapter are

consistently referenced to the drop test, they may apply to other situations

as well. For example, bringing a falling package to rest with constant

deceleration from a pre-impact velocity v in a stopping time t is0 5

equivalent to accelerating the same package upward with constant accel-

eration from a state of rest to a velocity v in a time t .o s

I. WIRE STRESSES

A. Upper Bound Estimate.- The wire and an upside-down falling package

just prior to their impact on a rigid surface are shown in Figure 1. The

wire, BC, is assumed to have its ends at the same level and an initial

loop height H that is small compared to the span S. The initial shape of

the wire is represented by the function y 0 (x) in Figure 2. The wire is

assumed to have negligible bending stiffness.

An upper-bound estimate of the maximum tension produced in the wire

by the impact can be obtained by assuming that at impact the motion of

the ends of the wire (B and C) is instantaneously arrested and the wire

achieves an extreme deflected shape yl(x) (see Fig. 2) that is completely

devoid of kinetic energy (as in a standing wave vibration). Assuming

conservation of energy, we may equate the strain energy of the configura-

tion yW(x) to the initial kinetic energy of the wire just prior to impact

and thus determine the amount of stretch of the wire in its extreme

def!cctcd ohapp. An analysis on this basis has been carried out in

Reference 11. The result, for wires that obey Hooke's law, is
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Figure I.- Wire (BC) in a package undergoing

upside-down flatwise impact.

s

Figure 2.- Wire configurations (initial and deformed).
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E v = -2 (1)Emax O 0 E C

a m EE = v 0 /c (2)max max o a

where c is the maximum strain produced in the wire, a is the corres-max max

ponding maximum tensile stress, v is the velocity of fall just prior too

the instantaneous arrest of the ends of the wire, p is the density of the

wire material, E is the Young's modulus of the wire material and

r" E/p (3)

is the speed of sound in the wire. (These results, it will be noted, are

independent of the spans.) The maximum bond force F is obtained by
max

multiplying ama x by the cross-sectional area A; thus,

F =o A= v 0 A (4)max max o

Equations (2) and (4) predict rather significant wire stresses and

bond forces. For example, the following table gives the a and
max

F computed in Reference 11 for gold and aluminum wires of 1.2 milsmax

diameter as a result of a 4-foot flatwise drop (v°  16 ft/sec):0

Gold Aluminum

a max (ksi) 28.3 9.77

Fmax (grams) 14.5 5.0

The stresses are a significant fraction of the ultimate tensile

strengths ofthe wire materials, which are on the order of 60 ksi, and the

bond forces are comparable to or greater than those that would be developed

in the Method 2011.2 MIL-STD-883B pre-cap pull tests (see Figure 7 of Chapter 2).
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B. More Accurate Analyses.- The assumptions of instantaneous arrest

and subsequent standing wave motion, in the approach of Reference 11 just

described, were considered to be possibly serious limitations on the

validity of the results obtained; therefore more refined analyses were

undertaken.

The first of these was presented in Reference 12. It retained the

assumption of instantaneous arrest, but dropped the standing wave assump-

tion, allowing instead for the travelling wave nature of the wire motion

subsequent to the arrest of its ends; and it added an additional restricti,

to the effect that there was no initial slack, i.e., the initial loop

height was zero. For this case, Reference 12 showed that the upper bound

Equations (1), (2), and (4) are remarkably accurate -- only 5% too high

However, Reference 12 still retained the assumption of instantaneous arrest

and it had added a new assumption, that of zero initial slack; therefore,

the acceptability of Equations (1), (2), and (4) was still in doubt, and

additional work was undertaken.

This additional work consisted of a fairly straightforward extension

of the analysis of Reference 12 to include both finite (non-zero) arrestine

time and finite (though small compared to S) loop height, with an initial

parabolic wire shape. This analysis led to dimensionless graphs of wire )
strain versus time for given initial loop heights and arresting times.

Typical graphs of this kind are shown in Figure 3. In this figure, e is

a "reduced" strain parameter, T a dimensionless time, Ts a dimensionless

* It showed the strain rsising to a peak value of .95 vo/c in a time of
t - .68 S//v4oc, then diminishing rapidly, with the occurrence of the
maximum strain concident with the meeting of a pair of travelling deflec-
tion waves, one from each end of the wire.
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Figure 3.- Graphs of "reduced strain" e versus dimensionless

time T for different dimensionless stopping times

T8 and a dimensionless loop height of h' - 2.0.

(Solid curves are for constant deceleration,,,

dashed curve for sinusoidal deceleration.)
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stopping time, and h'a dimensionless initial loop height. Their definitions

are:

e Ec (5)
v

T 1 rv-T (6)
So

t

Ts -~A r-- (7)S o

h' -g (8)

where c is the actual strain (elongation divided by original length), t

is actual time, ts is actual stopping time (i.e., the time required for

the velocity of the wire ends to drop from v0 to 0), and H is the actual

initial loop height. For simplicity, the deceleration during the arresting

period was assumed to be constant, however the dashed curve shows the

results of one set of calculations in which the deceleration was assumed

to vary like a half-sine wave instead. It is seen that the latter assump-

tion leads to somewhat higher strains.

By reading the peak values of e from many curves of the kind shown in

Figure 3, it was possible to plot the curves of Figure 4, which gives the

peak value, e max, as a function of Ts and h', for the case of constant

deceleration of the wire ends during the arresting period. In accordancR

with Equation (5) the actual maximum strain e can be recovered from themax

"reduced" maximum strain e by means of the relationship

Se 'o (9)
max max c
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Figure 4.- Dimensionless graphs of maximum reduced strain as

a function of stopping time and loop height.
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As an aid in judging the degree of inaccuracy of the upper-bound s3lution,

Equation (1), as compared with Figure 4, it may be noted that Equation (1)

is equivalent to

e -1 (10)

The results in Figure 4 are interesting and revealing. All of the

graphs start out at T. - 0 with emax not much below 1.0; thus, if the arrest

is instantaneous, finite loop height does not produce much reduction of

C a" from the upper bound value. Also, for small loop height (h' z 0) the

graphs of e drop down rather slowly as T increases; thus, finite stoppingmax s

time does not produce much reduction of E if the loop heightmax

is small. Therefore loop height alone and finite stopping time alone do

not cause much reduction in the maximum strain below that predicted by the

upper bound solution. However, the graphs show that finite loop height and

finite stopping time together can indeed cause the Emax to be very much less

than the upper bound prediction. Also, in contrast to the upper bound

solution, the more accurate analysis shows that the span S has a very

important effect on Em Equation (7) shows that a reduction in S will

increase Ts and therefore (see Figure 4) reduce emax. Thus, it will be more

difficult to stress short wires in a drop test than long wires. By the same

token, any lengthening of t will also reduce the stressing capability of
a

the drop test.

The maximum wire stress and bond force corresponding to any given wire

geometry and stopping time can be obtained from Figure 4 through the following

steps: Compute Ts and h' via Equations (7) and (8). Enter these in
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Figure 4 to get emax. Then Equation (9) will give cmax and the relations

a = Ec F =Ao (imax max max max (11

will give the maximum wire stress and bond force.

C. Numerical Examples.- In order to demonstrate the calculation

procedures just outlined, we shall consider a 1-mil diameter wire made

6 3
of gold (E = 12 x 10 psi, y = specific weight = 0.7 lb/in.

p - .00181 lb-sec 2/in. 4), with a span of S = .100 in. and an initial loop

height of H = .006 in., falling with a pre-impact velocity of v = 8 ft/sec

(which corresponds to a 1-foot drop) and, by virtue of highly polished and

highly parallel impacting surfaces, having its ends arrested in 9 micro-

seconds (which corresponds to an average deceleration of 27,600 g's), and

compute the resulting maximum tensile stress and bond force.

From the given data we have

J12 x106 in. ft.

c - .00181 81,424 - 6785 ft'
1Psec sec

h' -" -0 TE - 1.75

ts v10
-8

t9 x -60
T -A - F 10 1 8(6785) = .25
s S a I C (100)'

Entering Figure 4 with T = .25 and interpolating between the curves for5

h' - 1.5 and 2.0, we read e m .525, whence
max
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° a - (.525) 785 000619
mx max c=685

a - Ec - (12,000,000)(.000619) = 7428 psimax

F - Ao (.001)2(
Fmax Aa ("  (7428) = .00583 lb - 2.65 grams

We note that the wire stress of 7428 psi is a significant fraction of

the ultimate tensile strength of gold wires (which is around 60,000 psi).

In order to judge the significance of the 2.65-gram bond force, we may use

Figures 2 and 7 of Chapter 2 to compute the pull P that would be required

in a pull test to produce the same bond force. We first enter Figure 2

with H/S = .006/.100 = .06 and read R = .01 from the "catenary" curve. For

this R and an ordinate of T /AE = = .000619, Figure 7 gives
0 max

P/AE = 1.8 x 10- 4 . Thus, the required pull is

P - (1.8 x 10-4 ) x [1 (.001)2] x 12,000,000 = .00170 lb = 0.77 grams. This

is considerably less than the pre-seal pull strength of 3.0 grams and post-

seal pull strength of 2.5 grams specified in the MIL-STD-883B Method 2011.2.

Thus, the postulated drop test is not as effective as the pull test.

However, it has the advantage of being applicable to a closed package;

furthermore it is more effective than the centrifuge. According to Equa-

tion (7) of Chapter 2 the number of g's of centrifuge acceleration equivalent

to the postulated drop test is

G - P .00170 52,400
.59ySA (.59)(.7)(.100)[1 (.001) 2

It is not practical to attempt to subject a package to that many g's in

a centrifuge. If arresting times t shorter than 9 microseconds can be

achieved, the effectiveness of the drop test will, of course, be improved.
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The effects of changing the material from gold to aluminum and the

impact velocity from 8 to 16 ft/sec are seen in the tables below, where

the results of the above calculation and three others are summarized.

Because aluminum has a much lower density than gold, any test methods

that depend on the inertia of the wire will be less effective for aluminum

than for gold. This is well known in the case of the centrifuge; it is

equally true for the drop test, as the tables show. However, as the second

table shows, even for the aluminum the drop test retains its advantage in

relation to the centrifuge.

Gold Wire

v a F Equivalent Equivalent
o max max P in a Pull g's in a

(ft/sec) (psi) (grams) Test (grams) Centrifuge

8 7,428 2.65 .77 52,300

16 14,150 5.0 1.5 101,000

Aluminum Wire

v a F Equivalent Equivalent
o max max P in a Pull g's in a

(ft/sec) (psi) (grams) Test (grams) Centrifuge

8 1112 .40 .11 50,800

16 2150 .76 .21 102,000
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II. BASE STRESSES

We now focus attention upon the base AD of the package in Figure 1 and

examine its flexural response to the suddenly imposed assumedly constant

deceleration of the walls to which it is attached. For this purpose we shall

regard the base as a clamped elastic rectangular plate undergoing small

oscillations during and after the deceleration period and make use of the

approximate analysis of those oscillations in Appendix C, as well as other

approximate techniques.

A. Equivalent Lateral Pressure.- Assuming small deflections and

Hooke's law, Appendix C describes the state of deformation of the plate

(relative to its boundary supports) at any instant t by means of an

"equivalent" uniform lateral pressure p, defined as that pressure which,

if applied statically, would produce approximately the same state of deforma-

tion. Once this equivalent lateral pressure p is known for any instant t,

the dynamic deflections and stresses at that instant can be taken from the

static deflections and stresses produced by it. Inasmuch as many static

solutions are available for uniformly loaded plates, the use of the equiva-

lent lateral pressure concept greatly simplifies the dynamic stress analysis.

For constant deceleration of the package walls during the stopping

period, Figure 1 of Appendix C shows typical graphs of the equivalent

lateral pressure p as a function of time t for different stopping times ts,

using however dimensionless measures of p, t and ts, instead of p, t and ts

directly. The dimensionless measures are Q, T and Ts, respectively, defined

as follows:
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q P- (12)
Q Wv

n o

TW t (13)n

Ts W t (14)S nlS

where m is the mass per unit area of the plate, and w is the natural

circular frequency of its fundamental mode of vibration. Constant decel-

eration during the stopping period is assumed.

Of special interest are the maximum downward and maximum upward

equivalent pressures. The values of Q corresponding to these maximums can

be read from the positive and negative peaks of the curve for that T in

Figure 1. These maximums are summarized in Figure 2 of Appendix C. For

any given r s, as determined from Equation (14), the ordinate of the solid

curve of Figure 2, in conjunction with Equation (12), will give the maximum

downward equivalent pressure for base AD of the package, and the ordinate

to the dashed curve will similarly give the maximum upward equivalent

pressure.

In order to use Figure 2 of Appendix C in the manner just described,

one must know the fundamental natural circular frequency wn of the base,

and it can be found with the aid of Figure 3 of Appendix C. In this figure,

a and b are the length and width of the base, as measured inside the cavity,

m is its mass per unit area, and D is its plate flexural stiffness. If

the base is homogeneous with Young's modulus E, Poisson's ratio v, thickness

h, and density p, then m and D are given by
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M - ph D - Eh3/12[l - v2 ]  (15)

and the conversion from equivalent pressute p to deflections and stresses

can be done with the aid of the formulas and graphs in Chapter 1 or the

tables in Reference 3, the most useful of which are reproduced in Appendix B

of the present report. If the base is a two-component composite, like that

shown in Figure I of Appendix B, D is computed by means of Equation (5) of

Appendix B, and m from the formula m = plhI + p2h2, where p and h are

the density and thickness of the upper component, p2 and h2 those of the

lower component. (In such a composite base the upper component would

typically be Kovar, the lower component a ceramic.) The conversion from

equivalent pressure to deflections and stresses would be done on the basis

of the procedures described in Section V of Chapter I.

B. Numerical Examples.- For the first of two numerical examples we

shall assume that the base AD of the package in Figure I is a square ceramic

clamped plate with the following properties:

a - b - .875 in.

h - thickness = .040 in.
gas/m3  2 4

P - 3.85 grams/cm= .0003603 lb/sec /in.

E - 50 x 106 psi

S-= 0.22

*b = flexural strength = 65,000 psi,

computc the maximum tensile stress produced in it by the constant-decelera-

tion arrest assumed for the gold wire in Section IC (namely an arrest in

9 microseconds from a pre-impact velocity of 8 ft/sec), and then judge

whether or not the base is likely to be demage' in such a test.

-113-



From the given data, we have, for the one-component base under con-

sideration,

-6 2 3m - ph - (.0003603)(.040) - 14.41 x 10- lb-sec /in*

D Eh3  (50 x 10 6)(.040) 3  280.2 lb-in.
12(1-v) 2 12(1 - (.22)21

Entering Figure 3 of Appendix C with a/b 1, we get

D 28.2-
w - 36 -k-= 36 -6 4 207,343 sec

ma (14.41 x 10-)(.875)

whence

= W t f (207,343)(9 x 10- 6) 1.87s n s

For this r, Figure 2 of Appendix C gives

Qmax - (-Q),ax = .86

The corresponding equivalent pressures are

p - t .86 mw v

- t .86 (14.41 x 10-6)(207,343)(8 x 12)

=±247 psi

where plus means downward and minus upward.

The simplest procedure for estimating the maximum tensile stress due

to this pressure is with the aid of Table 1 of Appendix B. It shows the

maximum bending moment in the clamped base under uniform pressure to occur

at the middle of the sides and to have the magnitude
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2 2
Mm = .0513 pa .0513(247)(.875) = 9.70 in-lb/in.max

The stress due to this momenr is zero at the middle surface and varies

linearly through the thickness. Its maximum value therefore occurs at

the extreme fibers and is

6 Mmax = 6(9.70) 36,400 psiOmax 2 2 =3,0 s
h 2  (.040)

This is less than the ceramic's flexural strength of 65,000 psi, and the

base is therefore not likely to be damaged by the postulated drop test.

For the second example we assume the same conditions as before, except

that the base AB of Figure 1 is now a two-component base, like that of

Figure 1 of Appendix B, with the upper component .015-in. thick Kovar aad

the lower component .025-in. thick ceramic of the same kind as before,

making the total thickness the same as before. Again let us calculate the

maximum tensile stress in the ceramic and judge whether or not it will

fracture under the postulated drop test.

This two-component base has figured in a previous example (Example 7

of Section VIII of Chapter 1). Therefore, with no additional calculation

we have

D - 179.929 lb-in.

v - .261

for its plate bending stiffnesses and flexural Poisson's ratio. Taking the

3 2 4density of Kovar to be 0.30 lb/in. = .000777 lb-sec /in., and the density

of the ceramic to be .0003603 lb-sec2/in4 as before, we obtain
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m = (.000777)(.015) + (.0003603)(.025)

- 20.66 x 10 -6 lb-sec2 /i

for the mass per unit area. The fundamental circular frequency is then

w - 36 fD= 361 179.929

Vma (20.66 x 106)(.875)

. 138,762 sec
-1

Therefore

T= . Wt sf= (138,762)(9 x 10-6) = 1.25

for which Figure 2 of Appendix C gives

Qmax Q)max 94

Again the maximum downward and maximum upward equivalent pressures have

the same magnitude.

The pressures themselves are

p - .94 Imw v
n o

= ± .94(20.66 x 10- 6)(138,762)(8 x 12)

- - 259 psi

Visualizing the curvatures of the clamped base under each of these two

"pressures," we take the following four stresses as candidates for the

maximum tension in the ceramic: a and o at the center of the plate;

a x and a at the middle of the edge x - 0. (The notation is that of
21 22
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Figures 1 and 4 of Appendix B.) Utilizing the procedure described in

Chapter 1, Section V, we obtain the following values for these stresses

due to the equivalent pressures of ± 259 psi

Location Stress Stress
Symbol Value (psi)

Center ax21 12,100

of
Base

ax 22-+ 24,400

Middle a
of x 2 1  ± 29,300
Edge
X =0 a 0ax22 57,000

Thus the maximum tensile stress in the ceramic is the extreme-fiber

stress of a = 57,000 psi developed at the edge of the base during thex22

upward flexing phase of its motion. This is smaller than the flexural

strength of 65,000 psi and would therefore appear to be safe. However, the

Judgment of "safe" must be changed to "probably safe" when we take into

account the likelihood that there will be a small gap between the peri-

phery of the ceramic substrate and the walls of the package, examine the

calculated edge bending moment in the Kovar within that gap, and compare

it with the fully plastic bending strength of the Kovar, which was found

to be m e 4.01 inr-lb/in.in the Chapter 1 example referred to earlier.e

That calculated edge bending moment is

2 .2Medge - .0513 pa = .0513(259)(.875) = 10.2 inrlb/in.

which exceeds a by some 2 times. Thus, we can expect some plastic
e 2
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hinge development in the central region of each edge. This would reduce

the edge stress o in the ceramic to the still safer value of
x2 2

4.01lO.--x 57,000 = 22,400 psi

but it would increase the ceramic stress a in the center of the plate

above its calculated value of 24,400 psi by some unknown amount. Con-

ceivably, the increase could bring the total stress in the ceramic up to

the breaking point of 65,000 psi.

C. Incorporation of Elastic Large Deflection Effects: A Simple

Expedient.- Small deflection theory was used in the derivations connected

with "equivalent lateral pressure" (Appendix C). Therefore if the method

of Section A above leads to small-deflection-theory deflections that are

large (i.e., of the same order as the base thickness), those deflections,

the associated stresses, and the equivalent pressure are, strictly speaking,

not correct. The simplest expedient for correcting the deflections and

stresses is to accept the equivalent pressure as correct, but calculate

the deflections and stresses from a large-deflection theory (e.g.,

Figures 12, 14 and 15 of Chapter 1 for a single component base), rather

than a small-deflection theory. There is an admitted inconsistency in

this procedure, but the results obtained thereby will be more accurate

than those obtained by a strict adherence to small-deflection theory.

D. Incorporation of Elastic Large Deflection Effects: A More Rigorous

Approach.- A somewhat more rigorous procedure for incorporating large-

deflection effects into the dynamic analysis of base response is given in
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Reference 13, but is restricted to a single-component base and instan-

taneous or near-instantaneous arrest of motion (Q 1 1). For a clamped

base, that procedure gives Figure 5 as the relationship between impact

velocity v and equivalent lateral pressure p. With p known, existing

large-deflection solutions (e.g., Figures 12, 14 and 15 of Chapter 1)

can be used to determine maximum tensile stress and central deflections.

If we assume the boundary restraints of Figure 12(c) and 15(c) of

Chapter 1, in particular, Figures 6 and 7 of the present section are

obtained for the maximun tensile stress a' and central deflection 6
max

as functions of the impact velocity v .o

11. LID RESPONSE

Obviously, most of the material in Section II is applicable to the

lid of a flatpack in a right-side-up flatwise drop test. If the lid is of

a ductile metal, however, an additional consideration may be important that

was not covered in Section II, namely the effect of plasticity on the

maximum central deflection. This consideration will be taken up in the

present section, with attention restricted to the case of instantaneous

or near-instantaneous arrest (Q - 1).

A. Plasticity Considerations.- For the lower v 's there may be no
0

plastic yielding at all or the plastic regions may be quite localized,

which means that the computed central deflection neglecting plasticity may

still be reasonably accurate. (It has been suggested in Reference 5 that

the computed central deflections neglecting plasticity are correct even

if the computed elastic stresses exceed the tensile yield stress by as
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Figure 6.- Graphs for determining maximum tensile stress C'nax in a clamped
rectangular base in a flatwise upside-down drop test due to
Instantaneous arrest of its boundary from a velocity vo. (Based
on approximate elastic large-deflection theory. Taken from
Reference 13.)
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Figure 7.- Graphs for determining maximum central deflection 6 produced in
a clamped rectan~gular base in a flatwise upside-down drop test
due to instantaneous arrest of its boundary from a velocity vo.
(Based on approximate elastic large-deflection theory. Taken
from Reference 13.)
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much as 50%.) For more severe impacts the regions of plastic flow may

become comparable in extent with those of elastic deformation, and then

the elastic calculations could seriously under-estimate the central

deflection. Unfortunately, the analysis of rectangular plates in which

elastic and inelastic deformations are of comparable importance is very

difficult, and we shall not attempt it here. Paradoxically, the case

of very highly developed plasticity, as might occur with the larger v0 's

in instantaneous or near-instantaneous (Q 1 1) arrests, can be handled

more easily, using limit or yield-line analysis. Such an analysis was

carried out in Reference 13, and the following result was obtained for

the maximum central deflection 6 of a constant-thickness clamped rectangular

lid as a function of the pre-impact velocity v for the case of instan-

taneous or near-instantaneous arrest:

2

6 3 ba Vo = (16)
4Z h aob

where h, a and b are the thickness, width and length of the lid; 0 is the

density of the lid material; ab is the modulus of rupture of the lid

material; and

a b 1-+ a 3 (17)
3 a b J

The modulus of rupture ab is related to the fully plastic bending strength

m as follows:p

m- bh 2/6 (18)=p

Therefore Equation (16) may be written as
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h bay 2(9

-8Z m
p

If the lid has a thinned edge, as in Figure 2 of Chapter 1, with thickness

h less than the thickness h of the rest of the lid, the fully plastice

bending strength in the edge region will be

2i

mpe -abh e2/6 (20)

and instead of (19) the following deflection formula is obtained:

h bav 2P0 =(21)
4Z m +m

pe p

Inasmuch as m and m are proportional to the squares of h and h ,pe p Pe

rope will usually be much smaller than mp, allowing Equation (21) to be

simplified to

hbayo2p

6 h 0 (22)
4Z m

p

B. Maximum Deflection of a Constant-Thickness Ductile Lid.- Given the

v of a right-side-up flatwise drop test of a package with a constant-thick-0

ness ductile lid, we do not know at the outset if plasticity effects need

to be considered in calculating the maximum central deflection 6 in an

instantaneous or near-instantaneous (Q 1 1) arrest. Therefore the following

procedure is recommended for arriving at this deflection:

(a) Compute 6 considering the lid as a clamped plate and ignoring plas-

ticity -- i.e., by the methods of Section II.

(b) Compute 6 on the basis of yield-line analysis -- i.e., using Equa-

tion (16) or (19).
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Both of these calculations will probably under-estimate 6, the first because

it neglects plasticity, the second because it assumes the lid to be rigid

everywhere except along the yield lines. Therefore take the larger of

the two results as the better estimate of the maximum central deflection.

C. Maximum Deflection of a Ductile Lid with Thinned Edges.- The

following steps are recommended in this case:

(a) Compute the edge bending moment normal to the middle of the longer

edges considering the lid to be a clamped plate and ignoring plas-

ticity -- i.e., by the methods of Section II. if this bending

moment is smaller than mpe, you may assume that there are no plas-

ticity effects; therefore do step (a) of the preceding section and go

no further. If the bending moment is larger than me, plastic hinges

will have formed over some portions of the edges, and the lid may

actually be behaving more like a simply supported plate than a

clamped plate. Therefore do the following steps.

(b) Compute 6 considering the liC to be a simply supported plate and

ignoring plasticity -- i.e., by the methods of Section II, using

tables and/or graphs that apply to simply supported plates, rather

than to clamped plates. This will be a conservative (i.e., too

large) estimate of the elastic central deflection.

(c) Compute 6 on the basis of yield-line analysis -- i.e., using

Equation (21) or (22).

(d) Take the larger of the above two 6's as the best estimate of maximum

central deflection.
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D. Numerical Examples.- Let us determine the maximum inward central

deflection of a constant-thickness Kovar lid due to a 16 ft/sec impact

in a flatwise right-side-up drop test, assuming essentially instantaneous

arrest of the package walls. The dimensions and properties of the lid are:

a = .92 in., b = 1.84 in., h = .010 in., E = 20 x 106 psi, v = 0.3,

a - 107,000 psi, p = 0.3 lb/in = .000777 lb-sec 2/in .

From the given data,

b a 0
- 2 0.5
a b

-6 2 3
m - ph = (.000777)(.01) = 7.77 x 10- 6 lb-sec /in.

3 6 3

D Eh (20 x 10 )(-l) = 1.8315 lb-in.

12(1-v 2) 12(1 - (.3) 21

Figure 3 of Appendix C then gives

2. F D 1.8315)- 14053 ec
n m. 4 5 (7.77 x i0-6,(.92)4

For near-instantaneous arrest, Figure 2 of Appendix C gives Qmax = 1.

Therefore Equation (12) gives the equivalent pressure as

p V mv = (7.77 x 10 )(14053)(16 x 12) - 20.965 psi
n o

The corresponding small-deflection-theory center deflection from Table 1

of Appendix B or Figure 14 of Chapter 1, is,

8 - .00254
p a  (20.965)(..92)4= .0208 in.

D 1.8315

This is larger than the lid thickness of .010 in. Therefore a correction

is needed. Adopting the suggestion of Section IIC, we shall accept the
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calculated p and use Figure 15(c) of Chapter 1 to obtain the deflection

correction factor n5 for that p. To that end we compute

4 4
2a. (20.965)(.92) 75

4 6 4
Eh (20 x 10 )(.01)

Entering this and b/a = 2 into Figure 15(c) of Chapter 1, we find that

n .89. The corrected central deflection is therefore

6 = (.0208)(.89) = .018 in.

This completes step (a) of the Section B procedure.

For Step (b), we use Equations (17) and (16) to compute a second 6

estimate, based on yield-line theory, as follows:

Z - [ 5 + 3(2) + (0.5)2 + 3 = 5.535

___3 (1.84)(.92) (16 x 12) 2(.000777)(1 .006 in.

The larger of the two 6 estimates, namely .018 in., is taken as the

better one.

IV. FEASIBILITY OF THE DROP TEST AS A SCREEN

On the basis of the studies in Sections I and II, some observations

can be made about the feasibility of the flatwise upside-down drop test

as a stressing device for the wires in closed flatpacks.

First, it is clear that, as far as the wires alone are concerned, any

significant stressing will require rather short stopping times ts -- stopping

times on the order of several microseconds.
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Secondly, in order for those short stopping times not to result in

damage to the base of the package, the pre-impact velocity v will have

to be small -- say of the order of 8 ft/sec.

Thirdly, if these conditions can be met, there will be at least some

(not all) wire configurations that can be stressed sufficiently to rupture

poor quality wires or bonds. The stressing will be most effective for the

longer wires (say S > .1 in) of denser material (e.g., gold) and least

effective for the shorter (S <.I in) and lighter (aluminum) wires.

The requirement of small v can be met by having the package drop from0

a sufficiently small height. Meeting the small t requirement is mores

difficult; it will require that the surfaces that come in contact during

the impact be highly polished and highly parallel, so that the closure of

the gap between them can be accomplished in a very short time.

A suggested apparatus for the drop test is shown schematically in

Figure 8. It would consist of two equal-diameter hardened solid cylinders

A and B, of bearing steel (say AISI 52100), one above the other and with

their axes vertical. The lower and slightly longer cylinder would be

firmly grounded. The upper cylinder with surfaces ab and cd highly polished

and parallel, would carry the test package firmly pressed to its upper

surface ab, and, suitably guided, would fall and strike the lower cylinder.

If the impacting surfaces cd and ef were flat and parallel to within close

tolerances, surface cd would experience a near-instantaneous velocity change.

Through wave action this velocity change would be replicated, with a time

delay, at the upper surface ab, and there imparted to the package. (Note

that if v is the desired impact velocity, the falling speed v1 of the N
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upper cylinder would have to be 2vo , as indicated in the sketch. The reason

is that surface cd is brought to rest only with respect to a reference

frame in which the two cylinders are approaching each other with equal

speed; such a reference frame is one that is moving downward with a speed

of V1/2. Relative to this reference frame, the surface cd is brought to

rest from .;peed of v /2. Therefore v /2 must equal the desired vo.)

The crucial question is whether the surface asperities can be made

small enough and the parallelism maintained well enough to produce gap

closures in times as short as several microseconds. Experiments performed

in another context suggest that this may indeed be possible. The experi-

ments referred to are those conducted at the Sandia Laboratories and else-

where for determining material properties at high strain rates. These

experiments involved the impact of highly polished parallel surfaces, and

the literature resulting from them (e.g., References 14 and 15) reports

closures occurring in nanoseconds. Of course, the impacting velocities

in these experiments were several orders of magnitude higher than the

8 ft/sec velocity proposed for the drop test, but then the required closure

times in the drop test are correspondingly several orders of magnitude

slower, being measured in microseconds, rather than nanoseconds.

Thus, it is likely that techniques are available for achieving the

degree of surface flatness and parallelism needed in the drop test. It

is conceivable that the air in the gap between the two cylinders might

serve as a cushion to impede rapid closure, in which case that gap should

be evacuated or the apparatus enclosed in a vacuum chamber. Also, some

developmental effort would undoubtedly be needed in order to achieve firm
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contact between the package base and surface ab of the cylinder holding

the package; lapping of the package base and the use of a thin liquid

film between package base and cylinder surface are two techniques that

could be tried.

It does not appear that further analysis and reasoning can provide a

definitive answer to the question of the feasibility of the proposed drop

test apparatus. However, the concept does seem promising enough to make

the development of a prototype device a worthwhile undertaking, if

entrusted to one of the groups experienced in the study of material pro-

perties at high strain rates through the impact of highly polished parallel

surfaces.

' 1 Packaje

La

Ir I 1 V1=2vB

Figure 8.- Schematic diagram of drop
test apparatus (LB > LA).
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Chapter 4 - EDGEWISE IMPACT

In this chapter (which is based largely on Reference 13) we consider

a flatpack in edgewise impact on a rigid surface (Figure 1) with a velocity

v parallel to the longer dimension, and review some possibly damaging

effects this impact could have on the lid or base. The lid and base

types to be considered are shown in Figure 2.

I. SINGLE-COMPONENT LID OR BASE

A. Elastic.- The single-component lid or base impacting edgewise with

velocity v on a rigid surface (Figure 3) can, in first approximation, be

treated as a uniform rod. When the material is linearly elastic (obeys

Hooke's law), the classical theory of impact for a rod (Reference 16) indicates

that a compressive stress a will start to propagate upward immediately

upon contact, travel with the speed of sound c in the material, and

eventually encompass the entire length of the lid or base (Figures 3(c) and

(d)). A tensile stress of the same magnitude will then propagate downward,

cancelling out the compressive stress as it goes (Figure 3(e)).

If E is the Young's modulus of the material and p its density,

the magnitude of the compressive stress will be

o XE (1)
c

where

C = 97 (2)

is the speed of sound in the material. Supposing that the velocity v is di

to a free fall from a height h, we may write
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Figure 1.- Edgewise impact of
a rectangular flat-
pack on a rigid

jV surface.

(a) (b) (c)

Figure 2.- Lid and base variations considered: (a) Constant-
thickness lid or base. (b) Lid with thinned
edges. (c) Two-component base.

t40

IV IV
rr

(a) (b) (c) (d) (e)

Figure 3.- Edgewise Impact of lid or base on rigid surface. (a) Front
view. (b) Side view. (c) Compressive stress wave travelling
upward. (d) Wave front has reached top edge. (e) Unloading
wave travelling downward. (v - impact velocity; c - speed
of sound in the material.)
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V-/j/2 (3)

where g - acceleration of gravity - 32.2 ft/sec 2 = 386 insec - 9.8 m/s2 .

Using this to eliminate v in Eq. (1), and Eq. (2) to eliminate c, we

arrive at the following alternate formula for a:

a.2- gh E(4)

The compressive strain c corresponding to a is o/E. Thus,

C - v/ C- v -/E- = ,hp/E (5)

In a free fall from a small height, v and h are rather small,

but E is generally very large; therefore Eq. (1) or (4) can lead to

significant stresses. For example, let us consider two specific materials,

a Kovar lid and a ceramic base with the following properties:

Kovar Ceramic

(lb/in?) 20 X 106 47 x 106

(lb/ft ) 2880 x 106 6800 x 106

P (lb-sec 2/ft ) 16.2 7.18

c / P (ft/sec) 13,300 30,700

An impact velocity of 16 ft/sec, which corresponds to a 4-foot drop, will

lead to a compressive stress of

v E = 16 06)

c 13,300 (20 x 10 = 24,000 psi (6)

in the Kovar and
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37 (47 x 106 = 24,500 psi (7)
i 30,700

The likelihood of these stresses causing damage can be judged by

comparing a with the compressive buckling stress a of the componentcr

under consideration and, in the case of ceramic, also with the compressive

strength a of the material. The elastic compressive buckling stress

acr of the lid or base shown in Figures 3(a) and (b), taking into account

the edge fixity furnished by the package walls, is

a c kE(t/a)2  (8)

where k is the function of b/a given by the solid curve in Figure 4

(adapted from Reference 17). The compressive strength a of a ceramic

is generally an item of information supplied by the manufacturer.

For illustrative purposes, let us apply these damage criteria to

the Kovar lid and ceramic base considered previously, assuming the following

additional characteristics:

Kovar Ceramic

a (in.) .92 .92

b (in.) 2.22 2.22

b/a 2.5 2.5

t (in.) .010 .030

ac (psi) 375,000

From Figure 4 (solid curve) we find that k - 6.95, whence Eq. (8) gives

the following buckling stresses:
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Figure 4.- Buckling stress coefficient for rectangular elastic
plates in longitudinal compression (Poisson's
ratio taken as 0.3).
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cr- 6.95 (20 106(.) 16,400 psi (Kovar) (9)

a - 6.95 (47 x 106)(.-)2 348,000 psi (Ceramic) (10)

Comparing (6) and (9), we conclude that the Kovar lid is very likely to

buckle under its impact-induced compressive stress of 24,000 psi. On the

other hand, the corresponding stress of 24,500 psi in the ceramic base (see

Eq. (7)) is well below both the buckling stress, Eq. (10), and the

material compressive strength quoted in the table above.

The buckling of a Kovar lid may be tolerable if the out-of-flatness

resulting from any permanent buckles is acceptable. In the case of a Kovar

base to which a ceramic substrate is attached with only a few bonds, the

Impact-induced buckling could conceivably damage the bonds and cause

separation of the substrate from the base, which suggests the possible

usefulness of the edgewise drop test as a screen for such bonds.

The fact that a thin Kovar lid or base can indeed buckle under impact

of the severity assumed in the illustrative example is evidenced by

Figure 5, which shows the buckles observed in a Kovar base after it had

been dropped (with random orientations) onto a linoleum-covered floor

several times from a height of 3 or 4 feet.

B. Inelastic.- The formulas given above are based on the assumption

that the material obeys Hooke's law, that is, that the ratio of the compres-

sive stress a to the corresponding strain c is constant. In brittle

materials like ceramics, the proportionality of stress to strain is thought

to hold up fairly well up to the point of fracture. Therefore the assumption
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Figure 5.- Kovar package bases (.92 in. x 2.22 in. x .010 in.)
Left: Undropped base. Right: Base that had been
dropped onto a linoleum-covered floor several times
with random orientations from a height of 3 or 4
feet; note permanent buckles produced by the impacts.

.S MAII IV0

Figure 6.- Compressive stress-strain curve of a ductile
material.

Figure 7.- Shape of advancing stress wave in inelastic Impact.
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of Hooke's law probably does not seriously limit the validity of the Section

A formulas when we are dealing with a ceramic lid or base. However, for

ductile materials such as Kovar, which possess a compressive stress-strain

curve like that shown in Figure 6, the linear relationship between stress

and strain breaks down at a point called the "proportional limit," symbolized

by P in Figure 6. Consequently, Eqs. (1), (4) and (8) are invalid for a

Kovar lid or base if the stresses they predict exceed the proportional limit

stress a . This is possible for Eqs. (1) and (4) if the height of fall isp

sufficiently great and for Eq. (8) if t/a is sufficiently large. In order

to allow for those possibilities we shall now generalize the considerations

of Section A to the so-called inelastic case.

We shall assume that the material property information needed for this

generalization is available, namely the compressive stress-strain curve,

whose equation we symbolize by a = f(E). From the stress-strain curve two

other quantities can be obtained as functions of E. They are the tangent

modulus E t(c) and the secant modulus E s(c), defined by

E = df/dc E = f(E)/c (11)
t s

and representing, respectively, the slope of a tangent and the slope of a

secant at the point (a,c) (see Figure 6).

With Et and E defined, we can now give the formulas related

to inelastic edgewise impact, that is, impact in which v is sufficiently

large to produce compressive stresses exceeding the proportional limit.

When this is the case, the distribution of stress along the height of the

package is no longer as shown in Figure 3. Instead the advancing stress

wave has the shape shown in Figure 7, and different parts of the wave travel
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with different velocities, all of them less than or equal to c. The maximum

compressive stress a is of main concern to us here, along with the asso-

ciated strain max . The latter is defined implicitly by the following

equation from Reference 3:

max

v . f A(.E)/O dc (12)

0

To use this equation we need a graph of the right side as a function of its

upper limit E . Once E max is known, the corresponding stress amax maxmax

can be obtained from the stress-strain curve; that is,

Ga M f(ex) (13)
max max

Equations (13) and (12) take the place of Eq. (1) or (4) whenever the latter

two lead to a > a
p

The usual modification of Eq. (8) to account for inelastic material

behavior consists of introducing a "plasticity reduction factor" n on

the right side to get

a - nkE(t/a)2  (14)cr

For n we adopt the following formula from Reference 18:

p 2(~ )E[22 4. 4 E )] (15)

where v = the elastic value of Poisson's ratio =0.3 and v is the
p

plastic value given by
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E
=o.5 - - (0. 5 ) (16)

p E

The E and E values in Eqs. (15) and (16) must be the ones associateds t

with the buckling stress a cr. Therefore n is itself a function of acr'

which implies that Eq. (14) must be solved by a trial-and-error or

iterative technique., However, Eq. (14) can be rewritten as

a cr/n = kE(t/a)2  (17)

and the left side plotted as a function of a cr. From this graph the

value of acr at which a cr/n equals kE(t/a)2  can be picked off,

thus avoiding trial-and-error or iterative calculation.

C. Lid with Thinned Edges.- In Sections A and B it was tacitly assumed

that the lid or base was a constant thickness. When the lid has thinned

edges, as in Figure 2(b), and the thickness of the edges is much smaller

than that of the rest of the lid, their moment resisting capacity is very

small compared to that of the rest of the lid. For simplicity and conserva-

tism we may neglect this capacity entirely; that is, we may assume that the

edges of the lid are simply supported (hinged).

This assumption leads to the following change in the preceding material:

The value of k in Equations (8), (14) and (17) should now be based on the

dashed curve in Figure 4 (taken from Reference 19).

II. TWO-COMPONENT BASE

We now assume the base to be a well-bonded two-component plate as in Fig-

ure 2(c), with the Young's moduli of the individual components being E1 and

E20 the corresponding thickness tI and t2 and the corresponding densities
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1 and p2. For such a base many of the formulas of the preceding section

are still valid provided that the symbols are re-defined.

A. Elastic.- If a strip of such a base is stretched to a strain of

E in the elastic range, the stresses in the individual components will be

a I - E o=Ec (18)*

and the mean stress a on the cross section will be

a Elt, E 2t2) (19)

Thus, such a strip behaves in extension or compression like a homogeneous

material with an effective Youngts modulus of

Eft + Et 2

E= 1 22 (20)tI1 + t 2

The mean density p of such a strip is given by a similar formula Z

+ P2t2  (21)

tI + t2

With E and p now defined as above, and with a now interpreted as mean

stress on the cross section, Equations (1) through (5) become valid for

the two-component base. Corresponding to any a, the stresses in the

individual components are

E1  E 2
a =- _ a = _ o (22)

in accordance with Equations (18), (19) and (20).

* Here we are neglecting small stresses that arise in the transverse

direction If the two components have different Poisson's ratios.
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The value of 0 required to cause buckling can be found from the

formula

S 210.9 kD (23)
cr a (t 1 + t2)

where k Is the function of b/a plotted in Figure 4, and D is the plate

bending stiffness computed from Equation (5) of Appendix B.

B. Inelastic.- From the compressive stress-strain curves of the

individual components, or by means of experiment, one can determine an

effective compressive stress-strain curve for the two-component composite.

Let us suppose the graph in Figure 6, with a now defined as the mean

stress on the cross section, to be that stress-strain curve. Then

Equations (11), (12) and (13) become valid for the composite.

For determining the value of a required to cause buckling, it is

suggested that the following modification of Equation (23) be used:

act n 2 10.9 kD (24)ar (t I + t2

with n calculated from Equations (15) and (16).
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Chapter 5 - SINUSOIDAL VIBRATION

It has been suggested that sinusoidal vibration could be used as a

means of stressing the internal wires of microcircuit packages. In this

chapter the practicality of this suggestion will be considered, with

special reference to vibration parallel to the package base and perpen-

dicular to the plane of the wire loop, so that the predominant mode of

stressing is flexure with a small amount of torsion.

We first note that commercially available shakers have peak accelera-

tions that are relatively low (in the 100's of g's) compared to the accel-

erations of 1000's of g's that were found to be needed in Chapter 2,

Section IV, in order to produce significant wire flexure in a centrifuge.

Therefore one can hope to achieve significant wire stressing with a com-

mercially available shaker only if it can provide frequencies that are at

or near the natural frequencies of the wire for normal mode vibration in

a direction perpendicular to the plane of the wire -- i.e., only if a

state of resonance or near-resonance can be developed. Therefore it is

important to know what these natural frequencies are.

The fundamental natural frequency f of any wire for vibration normal

to its plane can be estimated with the aid of Figure 1. The symbols in

Figure 1 are defined as follows:

f - fundamental natural frequency (Hz)(cycles/sec)

S - span (in.)

d = diameter (in.)

H = loop height (in.)
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c - speed of sound in the wire material (in./sec.) =EiP

E - Young's modulus (lb/in. )

p - density (lb-sec 2/in. 4 )

The units indicated in parentheses are typical; any other set of consistent

units may be used. In computing the data for Figure 1 the wire shape

was assumed, for simplicity, to be a circular arc and Poisson's ratio was

taken to range from 0.3 to 0.4 (the values for aluminum and gold,

respectively). The analysis leading to Figure 1 was based on the curved

beam equations (6.1.7) and (6.1.8) of Reference 20, converted to dynamic

form. The conversion consisted of changing all the ordinary derivatives

to partial derivatives and replacing the distributed loading term p by the

inertia loading ma 2v/t 2 (m - mass per unit length, v - deflection perpen-

dicular to the plane of the wire, t - time). The resulting equations were

solved in a more or less standard fashion for an excitation that consisted

of a simple harmonic motion of the attachment points in a direction perpen-

dicular to the plane of the wire. In this approach, a natural frequency is

an excitation frequency that produces infinite response for any finite

excitation amplitude, no matter how small.

In order to illustrate the use of Figure 1, let us determine the

fundamental natural frequency f of a .001-in. diameter gold wire

(E - 12,000,000 psi, p - .00181 lb-sec 2/in. ) of .100-in.span and .010-in.

loop height. For this wire

_ .010 0.1 c a - 12,000,000 81424 in./sec
S .100 P .00181
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Figure 1.- Grarh for determi.ning fundamental natural
frequency f (Hz) of a circular-arc wire
w~ith circular cross section, for vibration
perpendicular to the plane of the wire.
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For this H/S, Figure 1 gives S/f/cd = .908, whence

(.908)2 T (.908)2 (8l424)(.001) = 6700 Hz
S 2(.100)2

This is a frequency that commercially available shakers are capable of

developing.

In order to gain further insight into the natural frequencies of

microcircuit wires, we may consider H/S = .11 to be a representative height

to span ratio, giving S/7-cd - .9, and use this relationship to plot

graphs of S and d combinations leading to selected frequencies f. Those

graphs are shown in Figure 2 for aluminum wires and Figure 3 for gold wires.

Focussing attention on 1-mil diameter wires (.001 in.) as typical, and

considering that 50,000 Hz is about the upper limit of frequencies achievable

with commercially available shakers, we see from Figure 2 that resonance

can be induced in aluminum wires if their spans are greater than 55 mils,

and in gold wires if their spans are greater than 36 mils.

Thus, it would appear that significant flexural stressing can be

induced in a large fraction of microcircuit wires through sinusoidal vibra-

tion on a shaker capable of a frequency sweep up to 50,000 Hz. Despite

this capability, sinusoidal vibration is not necessarily to be recommended

as a mechanical screen for microcircuit wires. One reason is that the

internal damping of these wires might not be large, with the result that

resonance could destroy good wires as well as bad ones, unless the fre-

quency sweep were fast enough to avoid excess dwell in the vicinity of any

one natural frequency. How fast 'he sweep should be is something that

would have to be determined by trial and error. A second reason is that
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Figure 2.- Relationship between span S. diameter d, and fundamental natural
frequency f (Hz) for aluminum wires vibrating normal to their
plane (H/S a.11).
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shakers capable of developing frequencies up to 50,000 Hz can accommodate

only very small masses; thus only one package could be tested at a time.

And a third reason is that similar wire flexing can be produced more

easily and in a more controlled fashion by means of the centrifuge, as

was shown in Chapter 2.
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Chapter 6 - THERMAL SHOCK: FLEXURAL STRESS

IN FLATPACK LID SEALS

The screening of microelectronic flatpacks by means of thermal

shock, via Method 1011.2 of MIL-STD-883B, involves the sudden

insertion of the package into hot and cold fluid baths alternately

for fifteen or more cycles. The package is allowed to remain in each

bath at least 5 minutes. Increasing severity levels of screening are

achieved by increasing the temperature of the hot bath and/or reducing

the temperature of the cold bath.

In the first moments after the package is transferred into a bath

a very marked variation of temperature is developed through the thickness

of the lid. This non-uniformity of temperature would cause a curvature

to develop in the lid if it were detached from the rest of the package.

However, because the lid is not detached from the rest of the package,

but is instead bonded to rather short (therefore stiff) side walls,

this curvature tends to be suppressed, the mechanism of suppression

being bending moments transmitted from the side walls to the edges of

the lid. These bending moments produce flexural stresses in the wall-

to-lid seal; that is, stresses that vary from tension to compression

across the width of the wall. These stresses can exceed the allowable

working stresses for the seal material, thereby producing some damage

and a possible loss of hermeticity.

Consequently, it is important for both the designer and the

purchaser of the flatpack to have some means - preferably simple

formulas - of estimating the flexural stresses induced in the seal

during thermal-shock screening. Having such formulas and knowing the

level of severity of the screening that his package will have to
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undergo, the designer of the package can so desigi, it as to keep the

flexural stresses at or below their allowable values for the seal

material he plans to use. Having the same formulas and knowing what

the minimum acceptable strength of satisfactory seal should be, the

purchaser of an already designed package can select a screening level

severe enough to damage seals whose strengths are below this acceptable

minimum, but not so severe as to damage seals whose strengths are

greater than it.

This chapter, which is based on Reference 21, presents formulas

of the kind just referred to. The formulas are developed with par-

ticular reference to thin packages with constant-thickness lids;

their planform may be rectangular, as in Figure 1, or of any other

shape. They are based on a simplified one-dimensional heat-flow

analysis and on the assumption of linear elasticity (Hooke's Law)

for the lid material. Two kinds of seal geometry are considered.

In the "wide seal" (Figure 2(a)) the seal width ws is essentially

equal to the thickness w of the wall. In the "narrow seal"

(Figure 2(b), the seal is much narrower than the wall (ws << w) and

is located along the outside rim of the wall-lid interface.

I. SYMBOLS

The symbols related to package and seal geometry are shown in

Figures 1 and 2. The symbols to be used for the fluid and lid physical

constants are as follows;

It should be noted, however that he latter objective (the
screening out of low quality seals) can be achieved in other ways as
well; for example, through the use of external pressure (see Chapter 1).
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Figure 2. - Seal geometries.

-152-

ka



Tf W temperature

kf M thermal conductivity o l i

Cf = specific heat

Pf a density

T2 - temperature

k 2 = thermal conductivity of the high-

c 2 = specific heat 
temperature fluid

P2 = density

T1 = temperature

kI = thermal conductivity of the low-

c I = specific heat temperature fluid

01 = density

E - Young's modulus

v = Poisson's ratio

=L thermal expansion coefficient
of the lid material

k - thermal conductivity

c - specific heat

p - density

Also,

T r- room temperature

T C uniform lid (cover) temperature jutprior
c to the immersion of the package in a bath

It should be noted that T Cwill equal T rfor the first immersion and

T 2 or T I (alternately) for the subsequent immersions. Similarly,

* We are assuming here that the package remains in each bath long

enough for its temperature to become unif'orm and stablized at the bath

temperature.
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Tf will equal T2 or Ti, depending on whether the package is going

into the high-temperature or low-temperature bath, respectively.

Corresponding statements apply to kf9 Cf and Pf.

Any consistent units may be employed for the above defined

quantities. Here we give some commonly used ones for the sake of

illustration and in order to show the dimensions of the quantities:

Temperature (Tf, T2, Tit Tr, T) : *F

Thermal conductivity (kf, k2, k1, k): Btu-ft/(ft 2 _, F-sec)

Specific heat (ef, c2 , C 1 , c) : Btu/Ib

Density (pf, P2 5 Pis p) : lb/ft 3

Young's modulus (E) : psi

Poisson's ratio (v) : [dimensionless]

Coefficient of expansion (a) : (OF)-1

Two dimensionless groupings of the physical quantities arise

naturally in the course of the analysis; they will be represented by

the symbols R and S, defined as follows:

PfCf k f cf kfR V p c f S S P -c

Also,

2 pc k p V c k

Other symbols will be introduced as they are needed.
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II. THERMAL ANALYSIS

The maximum seal stresses occur in the very first moments after

immersion of the package into a bath. We shall assume that in this

short time (a) convection has not had a chance to develop and (b) any

significant temperature perturbation in the fluid is confined to a thin

layer adjacent to the surface of the lid. These assumptions permit the

following additional ones to be made: (c) The transfer of heat between

lid and fluid occurs only by conduction. (d) The direction of this

conduction is perpendicular to the lid. (e) At any instant the

temperature variation (in fluid and lid) along a line perpendicular to

the lid is the same at all points of the lid surface. We have thus

reduced the temperature analysis to a one-dimensional heat-conduction

problem.

To expedite the solution of this heat-conduction problem in a

manner that will lead to simple formulas, we shall make the following

further idealizations: (f) At any instant the temperature pertur-

bations have penetrated only a finite distance into the fluid and lid.

(g) Within each of these penetration regions the temperature varies

linearly with respect to distance from the lid-fluid interface. Simi-

lar simplifications were first employed by Levy (Reference 22) in

another context.

On the basis of the above, we shall now analyze the transient

temperature conditions that follow the (assumedly instantaneous)

insertion of a package into a fluid bath. We take the fluid and lid

temperatures to be uniform at Tf and Tc, respectively, just prior

to the insertion. These uniform temperatures are indicated by the
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dashed lines in Figure 3(a). The solid lines in Figure 3(a) show the

texperature distribution at some time after insertion, when the temper-

ature perturbations have penetrated a distance df into the fluid and

d into the lid, with d still less than the thickness t of the lid.C c

The lid and fluid are assumed to have a common interface temperature

T i . In accordance with assumption (g) above, we show a linear variation

of temperature from Ti to Tc in the temperature-perturbed region of the

lid and a linear variation from Ti to Tf in the temperaturg-perturbed

region of the fluid. Figure 3(b) similarly shows the temperature

distribution at a later time, when the temperature perturbation has

already penetrated through the entire thickness of the lid. The

temperature of the inner face of the lid is no longer constant at T

CCits value, which now varies with time, is denoted by T '.

The penetration distance df is a time-like parameter since it changcs

monotonically with time. It is appropriate, therefore, to first deter-

mine de, Ti and Tc as functions of df, then relate df explicitly to

the time T (measured from the instant of insertion). In the analysis,

the two regimes represented by parts (a) and (b) of Figure 3 must be

considered separately.

A. Case (a>: dc < t.- We start with Figure 3(a) and consider a

heat balance for the tube of material, of unit cross-sectional area,

shown at the left of the figure. First, the heat loss from the fluid,

represented by triangle ABC, must equal the heat gain of the lid,

represented by triangle ADE; thus

df(Tf - Ti)Pfcf m dCT - T )pc ()
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Secondly, the temperature gradients in the two materials must represent

the same rate of heat flow across the interface; that is,

Tf - Ti  Ti - Tc_____ i C- (2)
kf df k d

Division of one equation by the other gives the following formula for

the penetration distance d :C

d - Rdf (3)

R f k (4)

Equation (2), with dc eliminated via equation (3), now gives

S TfST + T(
Ti  S + I c (5)

where
[o 7cf k (6)

S c k

We have thus determined d and Ti as functions of d The absence of

df from Equation (5) indicates that the interface temperature Ti remains

constant as long as d is less than t. Equation (5) can be re-workedC

to give the temperature differences T - T and Tf - Ti as fractions

of the temperature difference Tf - Tc . The result is

T - T Tf Ti 1

Tf - c  S + I Tf -T S + I (7a, b)
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It is interesting that the interface temperature Ti obtained

above on the basis of rather extreme simplifying assumptions agrees

with the exact result cited in Reference 23 for the interface

temperature instantaneously developed in the case of two semi-

infinite solids at different uniform temperatures placed together

in perfect contact.

B. Case (b): Temperature Perturbation Extends Through Entire

Thickness of Lid - The above analysis is valid as long as the dc

given by Equation (3) is less than the lid thickness t; that is, as

long as df < t/R. Here we consider the case df ' t/R, which is depicted

in Figure 3(b). For this case the equations corresponding to (1) and

(2) are,

(8)

2 f(Tf - Ti)Pfcf _ t[(T - T ) c ) T 0c

Tf - Ti Ti - TC'
kf df i t (9)

Solving simultaneously for Ti and Tc', we obtain

kf +f cf dfTf( - - + - ') + 2TC

Ti kt (f cf df 0)

k df p c t

fkf Pf cf df kf _.

kf - + ) + 2T (I +- d
f- k df P c t c k dfT '= (11)

c kf t pc d

k df P c t

St will be shown subsequently that the maximum stress in the
seal occurs in the regime described by Figure 3(a). Consequently, the
reader who is interested only in knowing what this stress is, and is
not concerned with the entire time-temperature history, can skip
directly to the section entitled STRESS ANALYSIS.
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These results lead to the following temperature ratio formulas:

kf t Pf cf df

T - T k df P c t

Tf- TC kf t +f cf df (12a)
+2k- df- c t

Tf Ti 2

T f TC k f t P f Cf df(1b
+----- + 2

d f P c t

kf t Pf Cf dfT'-T kd +

T df pct (13)
Tf-Tc kf -ft p cf d 2f _+ --- + 2

k df P c t

kf t
T -T c  

k  d

T- (14)f - f t f f f

k df p c t

Equations (10) to (14) define various temperature quantities as

functions of the time-like parameter df for the range df 2 t/R.

C. Time-Temperature Relation for Case (a).- We shall now study

the dependence of df on the time T, starting with Case (a). The left-

side of Equation (1) is the heat Q lost by the fluid tube per unit

cross-sectional area, and the left side of Equation (2) is the time

rate of increase of this heat loss. We may thus write

1 I
Q - j df(Tf - Ti)pfcf (15)
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Tf - T

kQf T £ (16)
- df

where the dot over a symbol denotes differentiation with respect to

time T. Another expression for Q can be obtained by differentiating

Equation (15), taking into account that Ti is constant for Case (a):

1 -f(Tf (17)Q- -~d~T J£Jofcf

Equating the two expressions for Q, we obtain the following differential

equation defining df as a function of time:

kf I
kf dfpfcf (18)

The solution of this equation, for the initial condition df - 0 when

T -0, is 4kf T

df - 'f- (19)

Equation (19) gives the penetration distance df as a function of

the time T. Using the relationship to eliminate df in Equations (3),

we obtain the following relationship between d and T:c

pcd 2

d - - or - k (20)
C yPC 4k

Two times are of special interest: The time T1 at which d - .75t

(as will be seen later, this is the time at which the seal flexural

stresses reach their maximum value) and the time 2 at which dc - t.

From Equation (20) these times are found to be
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9 Oct- (21)
164 k

T2 m 4k (22)

D. Time-Temperature Relations for Case (b).- In this case the

heat Q lost by the fluid tube and the time-derivative of this heat

are given by the left sides of Equations (8) and (9). Thus

Q m 1 d -T2~ f~T f Ti)pfcf (23)

q k f d (24)
f

An alternate expression for & is obtained by differpntiating Equation (23),

taking into account the fact that T is now time-dependent because of its

dependence on df (see Eq. (10)). The result of the differentiation is

2Q f cf (f - TC)dfrk t fd) t ~ ~ (25)

{kf d 2 df 2

f i f )~ + 2 -i
-~~C ( .1 V)

Equating the two expressions for Q, and eliminating Tf - Ti by

means of Equation (12b), we obtain the following differential

equation for d£ as a function of t:

kf df)df kf "kf + f ef df 2 df

(26)

-162-

A0 t!



SUparating the variables, integrating, and imposing the initial

condition d = t/R when T = T2' we obtain

ff

kf(t-t 2 ) d/ + x x dx

e 2 k - (27)
kR c 2f f cf 2f /R k + 2x + c

as the relationship between d f/t and T valid for times greater

than T2 (or df /t greater than l/R). Introducing y = Rx as a new

dummy variable, we convert Equation (27) to

2 -2) S (2 8 )

Pct

where

Rd fItf/

R ) (S + y) y dy (29)
1 S + 2y + Sy 2

Making use of Equation (22), we can put Equation (28) into

the more convenient form

0c 2

" W P .25 + I(Rdf/t ; S)J (30)kf

Equation (30) gives the time T required for the temperature

perturbation in the fluid to penetrate a distance df when df

is any value greater than t/R. The right side of Equation (29)

is readily integrated, giving the following explicit expressions

for the function I(Rdf/t ; S):
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(p2 _ 1)/4 when S = 0; (31a)

p- 1 _2 -S2 (p2S + 2p+S
S 2S + 2

_ + 1 + S pS + 1 S2
f S)+ ~2 InP

t S ~ ~ S + 1 + l _ 1i-

when 0 < S < 1; (31b)

2 2i~z 2- pS +2 +

S 2 2S + 2

21T 1Arctan (~-} whn

(31c)

In these expressions p is a short-hand symbol for Rd f/t.

To facilitate the use of Equation (30), Figure 4 gives the

bracketed term of that equation as a function of Rdf /t for selected

values of S. Equation (30), in conjunction with Equations (31) or

Figure 4, enables one to convert the right sides of equations (10)

through (14) into functions of time. Thus, one can determine, for

example, how long it takes for the temperature difference Ti - Tc

to reach some specified fraction, say 95%, of its ultimate value,

Tf - Tc ; or what Ti will be after a specified period of time, say

five minutes.

III. STRESS ANALYSIS

We turn now to the stress analysis, which consists of two

parts: First, the determination of the maximum transient bending

moment developed in the lid and seal after insertion of the package

in the fluid bath. Second, the translation of this bending moment

into flexural stresses in the seal.
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A. Maximum Bending Moment.- We regard the lid as a thin elastic

plate and make the usual assumption of plate theory: That material

lines normal to the middle surface remain straight and remain normal

to the middle surface.

By our earlier assumptions, the temperature variation through

the thickness of the lid is the same in all parts of the lid, and

the edges of the lid are clamped against rotation by the walls of

the package. Under those circumstances, an argument similar to that

on pp. 49-50 of Reference 3 will show that the lid remains flat; that

is, a uniform bending moment is transmitted from the walls to the

lid, through the seal, of sufficient magnitude to suppresss

the spherical curvature that would be produced by the thickness-

wise temperature variation. We shall now compute this bending

moment for the case d < t (Fig. 3(a)).c

We first assume that, beside the curvature, all middle-surface

strains are also suppressed. Then the stress distribution through

the thickness will be as shown in Figure 5(a), where

S Ea(T1 - T) (32)

and is positive for compression. We now assume that the constraint

*
against middle-surface expansion is completely removed. This

The walls of the package may actually provide some constraint

against the middle-surface expansion. The main effect of this, when

the lid is thin, is to put some horizontal compression into the lid

(which implies horizontal shear in the seal) without substantially

altering the bending moment from that given by Equation (34).
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corresponds to superimposing a uniform tensile stress 02, as

shown in Figure 5(b), with 02 of sufficient magnitude to cancel

out the resultant thrust due to 01. That is,

d
ca (33)

2  1 2t

The final stress distribution is then as shown in Figure 5(c).

Since there is no resultant thrust, this stress distribution

represents a pure couple. The bending moment M per unit width can,

therefore, be computed by taking moments of the Figure 5(a) and (b)

stress distributions about any convenient point. Choosing that

point in the middle surface, we eliminate the moment due to 02 and

obtain

M = _ ldc _
21 2

or, with a1 replaced by its expression from equation (32),

2 Tc)_ (Tidk t (34)
2 1 - 3

where, it will be recalled, Ti - Tc is independent of dc

Differentiating Equation (34) with respect to d and setting thec

derivative equal to zero, we find that M is a maximum when
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d - .75t. (The same result was obtained in Reference 22 in theC

case of a beam.) With d replaced by .75t, equation (34) gives thec

following expression for the maximum bending moment per unit width

in the regime o < T < T2:

3 Ea(T - TC) t

max 32 -V

This maximum bending moment occurs at the time T defined by

Equation (21).

There is no need to investigate bending moments for the

Figure 3(b) regime (i.e., for T > T 2). In this regime, the temper-

ature gradient through the thickness is always linear and always

less than it is at T T 2' The bending moment will, therefore, be

less than at T - T ; and, since T2 belongs to both regimes, its

bending moment is in turn less than that for T -TI .

Using Equation (7a) to eliminate Ti - T in Equation (35), we
C

arrive at the following final form of the m expression:max

2
3 S Ea(Tf - Tc ) t(m 32 S+l 1- (36)

The sign obtained for M must be interpreted as follows:max

A positive Mmax implies compression in the upper fibers of the lid

and the outer portions of the lid-wall interface. A negative M

implies tension in those locations. a
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Figure 5. - Superposition of stress distributions on lid cross

sections for the case d < t.
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Figure 6. - Flexural stresses in a wide seal.
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B. Flexural Stresses in the Seal.- We shall now estimate the

flexural stresses produced in the seal by the bending moment of

Equation (36). We shall consider separately the two cases shown

in Figure 2 (w z w and w << w), the "wide seal" and "narrow seal"

cases, respectively. The following symbols and sign convention will

be used for the seal stresses.

00 - stress at outer edge of seal, positive for

tension

ai = stress at inner edge of seal, positive for

tension

(1) Wide Seal.- Figure 6 shows the wide seal and the assumedly linear

stress distribution (as in Chapter 1) produced across its width by the

bending moment M max . The static equivalence of the stress distribution

and M requires that

co -- 6 mmax w s (37)
0 i " max s

or, using Equation (36),

-CO 9 . S E(Tf T) t 2

a i f + 6 S+ I-v (- w (38)
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(2) Narrow Seal.- For the narrow seal, we distinguish between two situa-

tions, depending on whether the temperature variation through the

thickness tends to produce an outward or an inward bulging of the lid.

In the former case, M is positive and is transmitted from lid to wall

entirely through the seal, as shown in Figure 7(a). In the latter case,

M is negative, and we can then expect it to be transmitted from lidmax

to wall by means of a concentrated compressive line load along the inner

edge of the wall plus a nearly uniform tensile stress in the seal

material (see Fig. 7(b)).

Considerations of static equivalence lead to the following seal

stresses for these two cases:

M POSITIVE[i.e.* c(Tf - T ) > o]
max C

o 9 S Ea(Tf -T) t 2

+T ( (39)

Mmax NEGATIVE(i.e., a(Tf - T) < o]

- M 3 S Ea(Tf T c  t2

0 " ° ew 32 S+l 1 - ew (40)
s s

where e is the dimension shown in Figure 7(b).

(3) Implications of Equations (38) - (40).- Equations (38) to (40) show

the parameters which have a significant effect on the stresses in the seal.

They show, in particular, that the seal stress magnitudes can be reduced by

increasing ws and e or by decreasing S, E, Ic(Tf - Tc )1, or t. Decreasing

S means decreasing the density - specific heat - thermal conductivity pro-

duct for the fluid or increasing it for the lid.
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Figure 7. - Flexural stresses in a narrow seal.
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IV. NUMERICAL EXAMPLE

A. Problem.- A package whose temperature has been stabilized at

-65*C is immersed in a fluid bath of 150*C temperature. The lid

properties are:

t - .015 in

E - 20,000,000 psi

V - 0.3

a - 5.3 x 10-6/C

k 1 10 Btu-ft/(hr-ft2 -,F) .00023 Btu-in/(sec-in 2- F)

c - .12 Btu/(lb-°F)

p - .302 lb/in3

The fluid properties are:

kf " .09 Btu-ft/(hr-ft2 _, F)

cf - .52 Btu/(lb-OF)

Pf - .035 lb/in
3

The seal is narrow, as in Figures 2(b) and 7, with

v - .010 in, w - .040 in, and e - .035 in

Determine: (a) The initial interface temperature, (b) the maximum

stresses developed in the seal, (c) the time at which these stresses

occur, and (d) the interface temperature and inside face temperature

five minutes after immersion.
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B. Solution.- We first compute R and S, using Equations (4) and (6):

1 .035 .52 10 .035 .52 .09
R .302 .12 .09 .302 .12 10 - 7

Equation (5) then gives the following solution to part (a) of the

problem:

T, 150 (.0671)+ (-65) .i _51C
£ 1.0671

Since this is a narrow seal and a(Tf - T ) is positive, Equation (39)

must be used to solve part (b). It gives

0L - 9 .0671 (20x10 6)(5.3x10-6)[150 -(-65)] ( .015\2

o + 16 1.0671 1 - 0.3 .010)

- + 2590 psi

Thus, the outer edge of the seal experiences a maximum transient compressive

stress of 2590 psi, while the inner edge experiences a tensile stress of

the same magnitude.

For part (c) we turn to Equation (21). It gives the follcwing time

at which the stress maximums occur:

.302 lb\ 2 B 2

T - ) ( 0 .005 sec
1 64 Btu-in

".00023 secin_

Equations (22) and (21) give T2 = (16/9)T I .89 sec. Thus, at

T- 5 min - 300 sec we are well into the Figure 3(b) regime. This means
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that to solve part (d) of the problem, we must use Equation (30).

Solving this equation for the bracketed term, we obtain

[.25 + I(Rdf /t;S)] Tk 2 (300)(.00023) = 8450
Pct (.302)(.12)(.015)2

Entering this as the abscissa in Figure 4 and interpolating to find

the ordinate associated with S = .0671 (or, alternatively, using Eq. (31b)

and solving for Rdf/t by trial and error), we obtain Rdf/t - 688, whence

d
f 688. . 47 92.1t 7-4

and
*

dE M 92.1 t - 1.38 in

Equation (10) may now be used to compute Ti. As a preliminary useful

step, however,we first compute the following quantites:

kf t .09 1

k df 10 92.1 00

Pf cf df .035 .52

p c t .302 .12 (92.1) - 46.5

Then Equation (10) gives the interface temperature as

This rather large penetration distance could be of the same order
aa, or greater than,the length or width of the package. In that case the
assumption of one-dimensional heat flow would no longer be valid, and the
remaining ca1.culations would have to be viewed with caution.
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T f(.0000976 + 46.5) + 2T c

T IM .000 0976 + 46.5 + 2 - 959"Tf + .041 T c

W .959 (150) + .041 (-65) - 141C

Simarly, Equation (11) gives the following inside-face temperature:

Tf(-.0000976 + 46.5) + 2T (1.0000976)

c .0000976 + 46.5 + 2

Thus, at the end of five minutes the lid temperature is essentially

uniform (Ti = T ') but at a temperature that is still 96C below the

fluid bath temperature. However, as suggested by the last footnote,

the validity of this result may be questionable.

V. FLEXURAL STRESSES PRODUCED IN SCREENING

We shall now apply equations (38) to (40) specifically to the

thermal-shock screening procedure. The first three steps of this

procedure are as follows:

Step 1 (preconditioning): The package at room temperature is immersed
in the high temperature bath for a minimum of 5 minutes.

Step 2: The package is transferred from the high-temperature to the
low-temperature bath and left there for a minimum of 5 minutes.

Step 3: The package is transferred from the low-temperature to the

high-temperature bath and left there for a minimum of 5 minutes.

The remaining steps are a repetition of Steps 2 and 3 for at least

fourteen times.

In using the stress formulas to determine the effects of Step 1, we

would set T equal to T (room temperature) and Tf equal to T2. We shall

assume that the five-minute dwell time is sufficient to make the package

temperature the same as the bath temperature. Therefore, in studying the
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effects of Step 2, we would assume Tc equal to T2 and set Tf equal to

T Similarly, for Step 3, we would take T equal to Tf and set Tf

equal to T2. In general, Tr will lie between T1 and T2. It is clear,

therefore, that Step I will produce less severe stresses than Step 3.

Consequently, we need only study the stresses developed in Steps 2 and 3.

The application of Equations (38) to (40) to these two steps of the

screening process is straightforward. The resulting maximum stress

formulas are summarized in Tables 1 and 2. In these Tables, S2 and S1

are defined by equation (6) with the fluid constants those of the high-

temperature and low-temperature fluid, respectively. I.e.,

S2  2 c 1  (41)2c 2k 2 cl k,
p c c p,

Note that EOL(T 2 - TI) appears as a factor in all the stress formulas.
1 -v

The significant information in these Tables can be summarized as

follows: In the case of a wide seal (Table 1) the magnitude of the

maximum tension and compression stress are both given by

9 Ea(T 2 -T 1 ) t 2 N (42)

max 16 -1- v w
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Step 2:
r fs2 Ea(T2-T1 t2. 9 S 1  E(T 2 -T 1 ) (_t 2

16 S+1 i - v 16 S1+ 1 - w-

T2 to T1

Step 3:
9 $2 Ea(T2-T1) t 2 9 S2 E_(T 2-T 1) 2_

Transfer from -
$2+ 1 16 S2+ 1 v

T1 to T2

Table 1. Wide-Seal Flexural Stresses

a 0 or i

Step 2:
3 S 1 Eci(T 2-T 1) t 2  3 S 1 m(T 2-T) 2

Transfer from T2 ___~(TT)~ S___ E~T- 13 l+1 1-V e32 S1+1 - V ew

T2 to TI

Step 3:
-9 2 1a(T2-T 1 t 2 9 2 Ec(T 2-T) 2

Transfer from 16 2+ 1 1 - v - 16 + 1 1 v (-)
2 2

T1 to T2

Table 2. Narrow-Seal Flexural Stresses
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where

S 2

N E the larger of and (43)

152+(3

In the case of a narrow seal (Table 2), the maximum tension is

given by

4- E'(T2 - (44)

maxtension 1 - V

where

No = the larger of 3 1 e
32 S I + 1 ews

and 6 S 2  ( - ) (45)

The magnitude (absolute value) of the maximum compressive stress is

9 S2  Za(T2 -T 1 ) 2 (46)

acompression 16 S2 + I I V w (

It is very likely that any damage to the seal arises from the tension

stress, rather than the compressive stress (which in any case never

exceeds the maximum tension stress). Therefore, Equations (42) and

(44) are the results of greatest interest.
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VI. APPLICATION TO PACKAGE OR SCREEN DESIGN

The usefulness of these results to the package designer can be

stated as follows: Knowing the screening bath parameters

(T2, Ti, S29 S1), the designer can design the package so that the

am given by Equation (42) or (44) (whichever applies) is less

than some conservatively assumed allowable tensile stress for the

seal material. On the other hand, the purchaser of an already

designed package can use the same formulas to select screening

parameters that will produce a 0 equal to some selected minimummax

acceptable tensile-strength value for the seal material, thereby

rupturing those seals whose strength is below that value. It should

be noted, however, that other screening techniques (e.g., external

pressure, as discussed in Chapter 1) may be more effective for the

latter purpose.

VII. INCLUSION OF BOILING

In Section II (THERMAL ANALYSIS) it was tacitly assumed that no

boiling of the low-temperature liquid occurs when the package is

transferred into it from the high-temperature fluid. Thus, the

thermal analysis presented there is valid if the computed interface

temperature Ti turns out to be lower than the boiling temperature

Tb of the low-temperature liquid. If Ti turns out to be higher than

Tb, a generalized thermal analysis is needed which takes into account

the heat of vaporization of the low-temperature liquid.
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Here we present the starting point of such an analysis with the

aid of Figure 8, which is Figure 3(a) generalized to include a vapor

phase of depth dv adjacent to the cover. Also, Figure 8 has been

drawn consistent with the fact that boiling can occur only for the

case Tc > T The following new symbols will be needed. They are:

Tb w known boiling temperature of low-temperature liquid

d - thickness of vapor layer produced by boiling of the low-
v

temperature liquid.

C fv heat of vaporization of low-temperature liquid

k = thermal conductivity

specific heat of the vapor atIfatmospheric pressure
PV M density

Implied by Figure 8 is the assumption that in the vapor layer the

temperature varies linearly from the value Ti at the interface with

the cover to the boiling temperature Tb at the interface with the

liquid. In the liquid, the temperature varies linearly from Th to

the unperturbed liquid temperature Tf in a penetration distance df

measured from the vapor-liquid interface.

In place of Equation (1), we now have the following energy

balance equation, which states that the cover heat loss represented

by triangle AGH is equal to the sum of (a) the heat that was required

to heat the liquid that is now vapor to its boiling point, (b) the ]

heat of vaporization of that mass of liquid, (c) the heat gain of

the vapor represented by triangle ABF, due to its mean temperature

rise above the boiling point, and (d) the heat gain of the unboiled

liquid, represented by triangle BCD:
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Figure 8.- Temperature distribution in low-temperature fluid and lid for

the case in which boiling occurs and the temperature pertur-

bation has not yet penetrated through the lid (d < t).
c
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2dcp(Tc-Ti)c -dvv (Tb-Tl)cf

+ d v Pv Cfv

+(- dvP (T -Tb)c
~2 c c i v bTc

+- df (Tb-Tf)cf  (47)2 vv b

There are now two interfaces: cover-vapor and vapor-liquid; therefore

there are now two equations corresponding to Equation (2). They are

Tc-Ti  Ti-Tbk-- k (48)
d v d

C v

Ti-Tb Tb-T f
v d k f d (49)

Equations (47), (48) and (49) can be regarded as three equations

defining Ti, d and df as functions of the time-like parameter dc

They are valid only for the phase dc <t of the heat transfer process

and only if their solution gives Ti >Tb.

To solve Equations (47), (48) and (49) most expeditiously,

we first solve (48) and (49) for dv and df in terms of dc, then subs-

titute the results into (47), cancel the common factor dct and thereby

obtain a quadratic equation for Ti in which Ti is the only unknown.

The outcome of these steps is:

kT-CT b k TbdvTi-db (,c -  1) (50)
v ck T-T c k TT d cl (

c i c

kf Tb-T f  kf Tbff b f E(51)
f ckTc-Ti c k T Ci
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J2

1 T (-K)+T (T K + k + T K
2 ci v ci bf vf vfv cb v

- (Tbfcbf + T bKfI +  Tb2 Kv + T bKf) " 0 (52)

in which the following notation has been employed:

Tci- T€ - Ti  Tcb T - Tb  Tbf T b - Tf (53, 54, 55)

K k p c V/kpc

Kvf - kVpVcf/kpc

(56)

Kvfv v kvPvcfv/kpc

Kf - kfpfcf/koc

In using these results, the quadratic equation (52) is first solved

for Tc , after which (53) gives Ti and (50) and (51) give dv and df

for any dc.

VIII. REMARKS

Simple formulas have been developed for the maximum flexural

stresses produced in the lid-to-wall seal of a microelectronic

flatpack under conditions of thermal-shock screening. In the derivation

of these formulas, attention has been restricted to the case of a

constant-thickness lid. If the lid is of a ductile material with a

thinned edge, the thinness of the edge and the plasticity of the

material will very likely provide an effective barrier against the

transmission of damaging bending moments across the lid-to-wall seal,

as discussed in Chapter 1.
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The formulas are based on a number of other simplifying assump-

tions, one of them being the assumption of temperature-independence

for the thermal and elastic properties of the materials involved. It

is known, however, that the properties of the package lid and the

screening fluids are to some extent temperature-dependent, and that in

the screening process marked temperature variations (both spatial

sand temporal) may occur. Consequently, the user of the formulas must

exercise some judgment in estimating appropriate average values for

the material constants appearing in them, based an the anticipated

ranges of temperature variation over the time period of interest.

Since the computed temperature variations themselves depend on the

assumed values of the material thermal constants, an iterative

calculation may be required in extreme cases.
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Chapter 7 - THERMAL SHOCK: BIAXIAL SURFACE TENSION IN DIP SEALS

If a solid object at a uniform high temperature T is plunged into aC

liquid bath of lower temperature Tf, then, according to Equation (7a) of

Chapter 6, the surface of the solid will immediately experience a tem-

perature drop of

AT - T - Ti i (T-Tf) (1)

where

S - Tpfcfkf/Pck (2)

with Pf, cfC kf the properties of liquid and p, c, k the local pro-

perties of the surface material of the solid! Thus, at the instant of

immersion, there develops an infinitely thin surface layer of cooled

material in the solid. Despite its cooling, there can be no thermal

contraction of this surface layer, because the bulk of the solid, with a

volume that is infinite in comparison with that of the surface layer, is

still at its original temperature T . The suppressed contraction willc

give rise to biaxial surface tensions. If these are sufficiently large,

and the surface material brittle, fracture of the surface material can

occur.

In using Equation 7(a) of Chapter 6, we are assuming that the liquid
is not brought to its boiling temperature Tb; that is, that the interface
temperature Ti = Tc - AT implied by Equation (1) does not exceed Tb. If
Equation (1) yields a Ti that does exceed Tb, Equation (52) of Chapter 6
may be used to compute a more correct Ti. Alternatively, if one wishes
to be conservative, one may simply assume Ti = Tb. The corresponding
surface temperature drop AT - Tc - Tb will be too large, causing
Equation (4) to predict a surface tension a that is also ton large.
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I. EVALUATION OF SURFACE TENSION

Inasmuch as the stress in the third direction (normal to the surface)

is zero, the magnitude a of the biaxial surface tension at any location

can be obtained from the biaxial stress-strain relations for plane stress,

namely

a'x l2 (e x + VC) oy E2 (Ey + vrx )  (3)

where E and v are the local Young's modulus and Poisson's ratio. The sur-

face tension a will be the comon value of a and ay required to produce

the strains e = - abT, where a is the local coefficient of thermalx y

expansion of the surface material. Thus,

a - E (l+v) cAT = EaAT (4)
1-V2 1-V

Equation (4) will give the tensile stresses produced at any location

in the exposed surface. If applied to the seal area of a glass-sealed

dual-in-line package (DIP) or other kind of package, in particular, it can

reveal whether or not damaging surface tensile stresses are likely to be

produced in the glass seal during the high-to-low temperature step of the

MIL-STD-883B thermal shock test or during any similar experience*. In

making this judgment it should be kept in mind that the surface tension

can be exacerbated by stress concentrations due to lead frames and lead

wires.

We are assuming here that the components of the package are "ther-
mally matched", so that the seal stresses under the high initial uniform
temperature are negligible. If that is not the case, and there are some
stresses under the initial temperature, then Equation (4) gives the changes
in stress produced by immersion of the package into the low-temperature
fluid.
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II. APPLICATIONS

In order to demonstrate the above-mentioned use of Equation (4),

let us assume that a glass-sealed ceramic dual-in-line package (CERDIP)

has been brought to a uniform temperature of 260C in a lead-tinning

operation, then, for purposes of slag removal, rapidly quenched in water

at room temperature (20C), and let us compute the resulting surface ten-

sion in the exposed glass of the seal, assuming the surface to have been

stress-free at the 260C uniform temperature.

The properties of the water are taken as

Pf 
= 1 g/cm

3

cf = 1 cal/goC

kf = 4.1 Btu-in./hr-ft 2-F

and those of the sealing glass are estimated to be

p - 6.85 g/cm
3

c - .02 cal/g*C

k - 6.3 Btu-in/hr-ft2 -.F

E = 9.5 x 106 lb/in2

v - 0.22

- 64 x 10- 7/*C

Then

S a 1 1 4.1 2.18
6.85 .02 6.3
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whence

AT- 2.18
AT - 2.18 + 1 (260 - 20) - 165 C

T, - T - AT - 260 - 165 = 95 C

(9.5 x 10 6)(64 x 10- 7)(165) 12,900 psi
1 - 0.22

Thus a rather large surface tension of 12,900 psi is predicted. The

strength properties of this glass are unknown, but if they are comparable

to those cited in Section VIII of Chapter 1, we should expect fracture of

the seal to occur in around 96% of the packages subjected to the assumed

quench.

In an experimental simulation of the event assumed in this example,

two CERDIPS were heated to 260 C in molten solder, then dipped in 20 C

water. Subsequent measurement of their lid torque strength (torque required

to remove the lid, applied coplanar with the lid) gave values of 20 in.-lb

and 0 in.-lb, as compared with lid torque strengths of 50 in.-lb obtained

for two virgin packages, thus confirming the damage predicted above. Two

packages that were quenched in crank-case oil (properties unknown), instead

of in water, had subsequent lid torque strengths of 60 in.-lb and 50 in.-lb;

that is, their seals suffered no damage.

It should be mentioned that during the water quench a very short dura-

tion sizzling was heard, indicating that the actual interface temperature

was at or slightly above the boiling temperature of 100 C. Thus, the above-

computed interface temperature of 95 C is slightly low, therefore slightly

conservative. Taking 100 C as the more nearly correct interface tempera-
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ture, we would get a AT of 260 - 100 160 C instead of 165 C, leading to

a surface tension some 3% lower than the 12,900 psi computed above.

As a second example, let %s consider the same CERDIP as in the pre-

vious calculation and compute the seal surface tension it experiences

during the level C thermal shock test of MIL-STD-883B. This involves

heating the package in a 150 C liquid bath and then immersing it in -65 C

liquid bath. (The temperature difference of the two baths is 215 C, which

is only 10% less than the 240 C temperature difference in the previous

example.) The low-temperature fluid will be assumed to be FC77 as suggested

in MIL-STD-883B. Its pertinent properties as taken from Appendix A, are

Pf = 1.84 g/cm3

Cf = .237 cal/g°C

kf - .65 Milliwats/cm-°C

- .451 Btu-in/hr-ft2-F

(These values are for a temperature of 0* C, which is about the middle of

the anticipated temperature rise of the FC77 in immediate contact with the

package. A somewhat lower temperature would have been appropriate, inas-

much as the rest of the temperature-perturbed fluid experiences smaller

temperature rises; however kf data are not given for temperatures below

0° C.)

The calculations for this example are as follows:

1.84 .237 .451 .4776.85 .02 6.3
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.477S47 11[50 - (-65)] - 69.4 C

Ti T c - AT - 150 - 69.4 - 80.6

(9.5 x 106) (64 x 0-7)(69.4) = 5400 psi

1 - 0.22

We note that even though the bath temperature difference in this example

is almost the same as that in the previous example, the 5400 psi seal

surface tension produced is less than half as severe as the stress of

12,900 psi obtained in the previous example. The large difference is due,

of course, to the use of FC77, rather than water, as the low-temperature

fluid. Again assuming the glass to have strength properties comparable

to those cited in Section VIII of Chapter 1, we would expect seal damage

in about 6.7% of the packages subjected to this screen, as compared with

96% damage for the previous treatment.

This and the previous example, taken together, show that the severity

of a thermal shock test should not be measured solely by the temperature

diffecence of the two baths involved in the test. The properties of the

fluids, especially those of the low temperature fluid, play a very important

role, as well.
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Chapter 8 - THERMAL SHOCK: ANNULAR GLASS SEALS*

Where a Kovar lead of circular cross section emerges from a Kovar

package it is commonly sealed by an annular glass bead. Figure 1 shows

a typical package containing such seals around lead wires emerging through

the base; in other packages the lead wires might emerge through the side

walls.

In the design of such packages the glass selected is usually one whose

thermal contraction from the set point down to room temperature matches

the thermal contraction of the Kovar over the same temperature range, so

that at room temperature the seal is free of thermal stress.

However, the glass and Kovar, though matched over that temperature range,

would generally not be matched for another temperature range. Therefore,

if the package is brought frcm rocm temperature to another uniform tem-

perature thermal stresses will develop in the glass seals and the metal

surrounding them. Thermal stresses will also develop as a result of any

non-uniformity in temperature within the glass seal or between the glass and

the metals, whether or not the seals are matched. Severv (though transient)

non-uniformities of temperature can arise during the MIL-SbD-883B thermal

shock tests immediately after the package is transferred into another

bath after its 5-minute dwell in one bath, the reason for the nonuniformities

being the different thermal conductivities, specific heats and densities

of the glass and metal. The associated thermal stresses in the seal could

conceivably result in a loss of hermeticity. For example, a sufficiently

large radial tensile stress at a glass-metal interface could cause a gap

to develop at that interface if the stress exceeded the tensile strength

of the interface material, leading to the ingestion of the thermal shock

*This chapter supcrsedes the analytic portions (Appendixes A through

C)of Ref. 26.
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Figure I.- Package with annular glass lead-through seals.
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test fluid into the package. To make matters worse, inasmuch as the

temperature gradients are transient, the existence of the gap might also

be transient and therefore undetectable once the temperature has become

uniform again. Sufficiently large circumferential tension in the glass

could also cause radial cracks to develop.

The capability of the thermal shock test to produce loss of hermeticity

and ingestion of contaminants was first pointed out by R.W. Thomas

(Reference 24). Thomas conducted an experimental study of packages subjected

to thermal shock and found that leakage appeared to be directly correlated

with the thermal shock. He suggested that thermal stresses in the vicinity

of the lead-through seals may be large enough to permit leakage during

the thermal shock which might go undetected during subsequent gross leak

testing of the package. Other literature (Reference 25) also indicates

that stresses during thermal shock testing can lead to fracture of the glass

seal.

In view of these findings it appears desirable to have a procedure for

predicting or estimating the magnitudes of the thermal stresses that might

develop in the annular glass lead-through seals of microcircuit packages

when subjected to thermal shock testing. The predicted stress conditions

can be used by the screener of the package to select a thermal shock test

level consistent with the level of stress desired in the test package. A

thermal shock stress analysis capability would also help the package

designer arrive at a seal that would remain hermetic during any anticipated

thermal shock testing of the package.
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The purpose of this chapter is to develop a stress analysis procedure

of the kind just referred to, based on some simplifying assumptions and

idealized modelling. The point of view is essentially that of Reference 26,

except for two differences: The finite difference method, rather than the

finite element method, is used for the temperature analysis, because it

appears to be more accurate; and in the stress analysis, plane stress is

assumed, rather than generalized plane strain, because it is simpler and

there is no strong reason to believe it is less valid.

The stress analysis procedure to be described below consists of two

parts: the temperature analysis, and the stress analysis proper, both of

which are embodied in a single APL computer program that prints out changes

of temperature and stress in the glass as functions of radial position and

time during any phase of the thermal shock test. In an illustrative

application of the computer program, the history of radial stress at the

glass-lead interface in a specific package during a specific thermal shock

test is tracked.

I. MDELLING

Apart from the annular glass seals, the package is assumed to be an

all-metal package consisting of N identical leads and a base, lid and

side-walls of the same material as the leads. (For simplicity, the base,

lid and side-walls collectively will be referred to henceforth as the

"base".) Ceramic and other components inside the package will be ignored,

although, if desired, they can be accounted for by adding an equivalent

(in the sense of total heat capacity) amount of metal to the base.
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As noted above, whenever the term "base" is used it should be under-

stood to mean the actual base, lid and side-walls taken together as a single

entity. The total volume of this base will be denoted by Vb and that part

of its surface area in contact with the thermal shock test fluid by A .

Additional notation will be intruduced as needed.

A. Modelling for Temperature Analysis.- Different models will be

used for the temperature analysis and for the stress analysis proper. The

model for temperature analysis is shown in Figure 2. It consists of a

single lead of volume VV radius a, surface area A in contact with the

thermal shock test fluid, surface area A2 in contact with the glass seal,

an annular glass seal of inner radius a and outer radius b, and, surrounding

the glass, a proportionate share Vb IN of the total base volume. The

surface area of that proportionate share of base that is in contact with

the test fluid is Ab/N.

Inasmuch as the metal has a migh higher thermal conductivity than the

glass, heat conduction in the lead and in the base will be assumed to be

instantaneous; that is, the temperature is assumed to be uniform through-

out the lead and uniform throughout the base. These two uniform tempera-

tures are allowed to be different and, of course, to vary with time.

Inasmuch as the surface area of glass exposed to the fluid will

usually be much smaller than the surface area of the glass in contact with

the metal (i.e., lead-glass interface area plus the glass-base interface

area), any direct transfer of heat between the fluid and the glass will be

neglected. All. of the heat transfer to or from the glass will be assumed

to occur through the two interface areas that it shares with the metal.

Continuity of temperature between metal and glass is assumed at these inter-

faces.
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Figure 2.- Modelling for temperature analysis.
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Those surfaces of the lead, base and glass that are inside the package

are assumed to be adiabatic; that is, there is no transfer of heat across

those surfaces.

In view of the above assumptions, the temperature T in the glass will

be a function only of the radial coordinate r and time T; that is T -T(r,).

The temperature will not vary in the axial (i.e., parallel to the lead)

direction.

The flow of heat between the fluid and the metal surfaces in contact

with it is assumed to be governed by a heat transfer coefficient h that is

the same for the fluid-lead interface as for the fluid-base interface.

This heat transfer coefficient is best determined experimentally by the

method described in Reference 26. In that reference the value of

2_-4 2_- 210 Btu/ft2 -hr-*F = 4.051 x 10 Btu/in. -sec-*F is cited for the case

in which the fluid is water and the package is Kovar.

The density, specific heat and thermal conductivity of the glass are

denoted by pg , c and k , respectively, and assumed to be constant. Inas-

much as these properties are to some extent temperature dependent, average

values based on anticipated temperature ranges should be used for them.

Similarly, the density and specific heat of the metal will be denoted by

Pk and ck (subscript k standing for Kovar, although the analysis is not

restricted to that metal), respectively, and also assumed to be constant.

The thermal conductivity of the metal will play no role in the analysis,

in view of the assumption of uniform temperature throughout the base and

throughout the lead.
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Certain combinations of the parameters defined above will arise

naturally in the course of the temperature analysis. We introduce them

now along with the short-hand symbols A, B, C, D and a that will be usedg

to represent them:

hA a B PkckV9

A2 k pgcgA2 a (1

a PkckVb
aINkg pgcgA1Na

ag thermal diffusivity of the glass = k /P c (2)

B. Modelling for Stress Analysis.- The modelling of the lead-glass-

base unit for purposes of stress analysis is shown in Figure 3. It will

be seen from the model that for stress analysis purposes only that portion

of the lead clinched by the glass is assumed to be effective; also that

the metal surrounding the glass is assumed to be representable by a metal

annulus of radius c with stress-free outer boundary. Some judgment will

have to be exercised in selecting an appropriate value for c. For the

case in which the lead comes through the side-wall of the package, it is

suggested that c be taken equal to half the height of the wall. When the

lead protrudes through the bottom of the package, as in Figure 1, it is

suggested that c be taken as the distance from the, center of the lead to

the nearest edge of the package. (For c sufficiently large the stresses

in the glass will become relatively insensitive to its value.)

-199-

1U



STRESS-FREE
OUTER BOUNDARY

ca

rr

STRESS ES
(PLANE STPE.

al 

r

Figure 3.- Modelling for the stress analysis.
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A state of plane stress will be assumed in the glass, in which the

glass normal stresses (or in the radial direction and at in the transverse

direction, both positive for tension) are functions of the radial coordinate

r and independent of the axial (parallel to the lead) coordinate. These

stresses will also vary with time by virtue of the fact that the tempera-

tures and temperature distributions vary with time.

The Young's modulus, Poisson's ratio and thermal expansion coefficient

of the glass will be denoted by Eg, vg and a , respectively; those of the

metal by Ek, Vk and ak. Inasmuch as they may be temperature dependent

(especially the a's), average values based on anticipated temperature ranges

should be used for these constants.

II. TEMPERATURE ANALYSIS

A. Basic Equations.- The initial uniform temperature of the package

prior to its immersion in the fluid will be denoted to Tot that of the

fluid by T . The fluid bath is assumed to be sufficiently large so that

its temperature is not affected by the immersion of the package; therefore

T is also the uniform temperature that the package approaches asymptotically

if left in the fluid for a long enough time.

The temperature T(r,T) in the glass is governed by the following

equations:

aT -32 T 13T- =a(- +¥ (a< r <b) (3)g 2
3T l T3
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taT 0o aT()
SC 0[) T - (T) + k( E) (4)

k k A2  DT rna A2 w rma g 3r a

Vb hkk .T T. -C() -T (5)
Pk kA 1N 9Tr A 1N rub gaDr r-b

The first of these is the familiar field equation for non-steady state

heat conduction. The second equation is a statement that the rate of

heat storage in the lead is equal to the rate of heat flow into the lead

through the fluid-lead interface plus the rate of heat flow into the lead

through the glass-lead interface. And the third equation is an analogous

statement for the base.

Rearranging terms, and introducing a dimensionless radial coordinate

x, a dimensionless time y, and a dimensionless temperature t, defined as

follows:

x E r/a (6)

y tag/a 2 _ Tk / c a 2  (7)

T- T(r,r)
T -= t(x,y) (8)

S 0

we can convert Equations (3), (4) and (5) to the following dimensionless

form:

3t t ir at
2 + (I <x <b/a) (9)

3y ax2  x x
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at At(1,y) + BYt-(10)

t) - Ct(b/a,y) + D( )(
x-bla ayx-bla

in which the notation of Equations (1) has also been employed. These

equations are to be solved subject to the initial condition

t(x,O) - 1 (12)

B. Finite-Difference Formulation.- We will express Equations (9)-(11)

in finite-difference form, using the grid shown in Figure 4. In this grid,

the labels i -1,2,...,M-l,M identify equally spaced stations in the radial

or x-direction, with stations i -f2 and M -1 being at the lead-glass and

glass-base interfaces (x-1, x ib/a), stations i -3,4,...,M-2 lying entirely

within the glass, and stations i =1 and i =M being "phantom" stations

lying outside the glass. The labels n -1,2,3,... identify equally spaced

stations along the time or y-axis, with n =1 corresponding to y -0. The

ordered number pair (i,n) will identify the grid point at station i in the

x-direction and station n in the y-direction, and t ,n will stand for the

value of t at this grid point. Ax and Ay will denote the grid-line spacing

in the x and y directions, respectively.

Our objective in this section is to determine all the t ,n for the i,n

combinations defined by i =2,3,...,M-1 and n -2,3,4,..... To that end we

shall employ the following finite-difference approximations for the

derivatives of t at the grid point (i,n):
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3t tin t in-1 (13)
ay dy

at ti+ln- i-nn (14)
ax =  2Ax

32t t i+l n - 2 ti n + ln (15)

ax (AX) 2

Writing Equations (10), (9) and (11) at the grid points where each applies,

substituting the above expressions for the derivatives, and making minor

rearrangements of terms, we obtain the following finite difference forms

of Equations (10), (9) and (11), respectively:

tl,nF + t2,nG t 3,nF t 2,n-1 (10)

ti-l,n Hi + ti,nj - ti+l,n Ki ti,n-IAx (9')

-tM2,nQ + t ml nP + tMnQ = tM-I,n- 1  (11')

where

P AY G 1 + A (16)2BAx B

Ay J AL + Ax Ki .+ -A (17)
Ax 2xi  Ax Ax 2xi

Q Ay P 1 + Cy (18)
2DAx D

in which xi denotes the value of x at radial station i. Equations (10')

and (11') are to be written for n = 2,3,4.... ; Equation (9') for

i-2,3,...,M-1 and n - 2,3,4,.... These equations must be supplemented

by the initial conditions
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t 0 (i = 2,3,...,M-1) (19)

coming from Equations (12).

C. Solution of the Finite-Difference Equations.- For any fixed n,

Equations (10'), (9') and (11') constitute a tri-diagonal system that can

be solved expeditiously by the method of Reference 27, which leads to a

solution in the form of a recursion formula. The method of Reference 27,

as applied to the present system, is as follows: Postulate

ti,n =i,n + a i,nt i+l,n (20)

where ai and 8 are as yet undetermined functions of i and n; and,whrea,n fi,n

with i replaced by i-1, substitute this into the first term of Equation (9')

to get

-(ai-l,n + Bi-l,nti,n )Hi + ti,n - ti+l,n i ti,n-iAx

or, solving for ti,n ,

ft Ax + c H i'ti.,n \ J-0i H ni n H(21)~
- + -mif8 li_ ',n+H] ti+ln (1

Comparing Equations (21) and (20), we get the following recursion formulas

for ai,n and 8i'n

- in-iAx + ai-ln Hi (22)
i,n J-0i. H

- Ki (23)
fll~n J-l'ln i
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Provided that the t i,n- 1 are known, these equations can be used to compute

i,n ad i,n once i-l,n and 8i_1, n have been determined. Thus, if l,n

and 0I are known, all the succeeding a and n can be obtained by
I'n i~n i,n

successive application of (22) and (23). The determination of al,n and B ,n

proceeds as follows: From (9') and the i=2 equation of (10'), we have

tl,nF + t2,nG - t3,n F - t2,n- 1  (24)

- tl,n H2 + t2,nJ - t3,n K2 = t2,n-iAx (25)

Now solve (25) for t3n , use the result to eliminate t3n in (24) and

solve the resulting equation for tl, n to get

F2,n-l(K 2 - FAX) r FJ - GK2]

i' I (K 2 +HR2) L ( 2 +2HJ T 2,. (26)

and comparing this with Equation (20), we infer that

t2 ,n-I(K 2 - FAx)

al,n F(K2 + H2) (27)

FJ - GK2

1,n F(K2 + H2) (28)

Thus, we have the starting equations needed for the recursive application

of Equations (22) and (23), provided that the t ,n_1 are known. When n = 2,

the t ,n_1 are indeed known, for then

t -t 0 (29i,n- i,1 0(29)
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by virtue of Equation'(15). Therefore, at least for n=2 we can determine

the following a's and O's:

a2 ,n; 3,n; . - ,n

02,n 03,n; 611-1,n

and for that same n, by successive application of Equation (20) we can deter-

mine successively tM-l,n' tM-2,n .... t2 ,n, and tl,n, if tM, n is known.

A formula for tM, n will now be derived: Write Equation (20) for i = M-1

and i = M-2 to get

tM-ln = aM-l,n + aM-l,ntM,n (30)

TM-2,n MM-2,n + BM-2,ntM-l,n (31)

Use Equation (30) to eliminate tK-ln in (31) to convert the latter equa-

tion to the form

tM_2,n = Y + 6 .',n (32)

where

Y 'M-2,n +8M-2,n M-I ,n

(33)
6 M 8M-2,n8M-l,n

Substitute (30) and (32) into Equation (11'), which has not as. yet been

used, and solve the resulting equation for tM,n to get

t - itn _In- + ( Y - PaM-I~n (34) ,
tMn = Q + P Ml ,n - Q6
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The procedure for computing the ti, n can now be summarized as follows:

Step 1: Taking cognizance of Equations (19), set n=2 and use Equations (27)

and (28) to compute al,n and 8 1,n then (22) and (23) to compute successively

2,n , 3,and 3,n ... nM I. and _ Equations (33) will
a2n and 2,n; a3nd ,n "' M-,n M-,n"

then give y and 6, and Equation (34) tM,n, after which Equation (20) with i

successively equated to M-l, M-2, .. ., 2, 1 will give tM-l,n; tM_2,n; ...;

t2,n; tl,n -- all for n = 2. At this point all the ti,n along the n = 2

gridline are known, including the ti, n at the phantom grid points (1,2) and

(M,2). Step 2: Set n = 3 and repeat all of the foregoing calculations

with the following difference: Whenever a value of tin-1 is needed, take

it from the results of Step 1, rather than from Equations (19). Step 3: Set

n = 4,5,... successively, and for each n repeat the calculations in Step 1,

using the results obtained for the preceding n whenever a value of t i,n- 1

is needed.

Fairly straightforward numerical experimentation can be used to

determine the optimum grid-line spacings Ax and Ay -- optimum in the sense

that they are sufficiently small to give accurate results, but not so

small as to require excessive calculations.

III. STRESS ANALYSIS

In this section we analyze the plane stress model of Figure 3 for the

ar and ot stresses produced at any time T in the lead, the glass, and the

base annulus by any given temperature distribution T(r,) in the glass, the

spatially constant temperature T(a,T) in the lead, and the spatially constant
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temperature T(b,T) in the base, assuming the system to have been stress-free

at the uniform temperature T . If the system was not stress-free at the0

uniform temperature To , then the computed ar and a t will represent the

changes of stress occurring as a result of the change in temperature from

the uniform value T to the distributions described above.
0

It will be convenient to introduce the following short-hand notation:

e(rT) = T(r,•) - T O  .(35)

Also, u(rT) will denote the radial displacements, E (rT) and E (r,T) the• ' r t

radial and transverse strains. The corresponding normal stresses a r(r,T)

and a t(r,T) have already been introduced and illustrated in Figure 3. E,

v and a, without subscripts, will be the general symbols for Young's modulus,

Poisson's ratio and thermal expansion coefficient for any of the three

components of the model shown in Figure 3. When dealing specifically with

the glass we shall add the subscript g to these symbols, and when dealing

with the lead or base the subscript k. The spatially constant values of 8

in the lead and in the base will be denoted by Ba and 8b , respectively;

that is,

a a e(a,T) f T(a,T) - T

(36)

eb - 8(b,T) - T(b,T) - T 0

A. Basic Equations.- For each component of the Figure 3 model we

have the following set of basic equations governing the distribution of

ar, at$ Er, t and u at any time T:
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3a a - o
r + r t , 0 (37)

r
r

1
C - a8 - (a - vo )

t (38)
1

Ct - ao - (a - o)
tE t r

au

r 3r
(39)

UC t r

Equation (37) is the equation of equilibrium for the element shown on the

right side of Figure 3, Equations (38) are the stress-strain-temperature

relations for an isotropic material in plane stress, and (39) are the

strain-displacement relations. These equations can be combined to yield

a differential equation for u(r,T) alone. It is

a2u+ 1 au u a(
8r2 r ar r2  +v)a (4

For the lead, in which 6 is spatially constant at the value ea'

Wae/r - 0, and u must be regular as r -0. Equation (40) then has the solution

u ( +Vk)ak e -+ Blr (41)k k a 2 1

where B is an as-yet-undetermined integration constant. These displace-

ments substituted into (39) will give the strains, and those strains

substituted into the inverted form of Equations (38) will give the stresses.

The result for ar in particular is

E
r - 1 [B- 2 a (l-vk)l (42)
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The displacement and radial stress in the lead at the lead-glass interface

(r -a) are therefore

u(a,T) (1+Vk)aka 2 + Ba (43)

Ek a'a = (1 -v)J

a (A- k 1a (BV1 ) ]  (44)

For the base annulus, in which 8 is spatially constant at the value

, 391W r is again zero, and Equation (40) has the solution

r D2
u V( +vk)ieb + Dlr + -r (45)

where D and D 2 are integration constants. This leads to

ar 1 Ek 2 2L Ckb + (l+Vk)Dl - (l-Vk) (46)

The boundary condition a rfi 0 at r - c givesr

D2  I [k  k D1  V ck] (47)

With Equation (47) used to eliminate D2 in (45) and (46), those equations

yield the following displacement and radial stress at the glass-base

interface (r =b):

+ k b2 2v
u(b,T) - - b + D b 2 I (48)

ar (b,T) Ek (17(- 2 (49)
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Finally, in the glass, Equation (40) has the solution

(l+v )OL r C2
u - - g f r'dr' + Clr + - (50)

r a1 r
a

where C1 and C2 are integration constants, r' is a dummy variable repre-

senting r, and e = e(r',T). These displacements lead to the following

stresses:

-r E Or'dr' + l2 (51)Lr9 2  a g (l+Vg:)rl

r -1 C1

at M Eg ag6(r,T) + 2 r'dr' + + 2 2 (52)
r a g (l+V ) r2

a g

where, in any integrand, e = 0(r',r). At the interfaces r=a and r=b

in particular, Equations (50) and (51) give the following displacements

and radial stresses:

C2

u(a,'t) . Cla + - (53)

u(b,T) =  b 0r'dr' + C1b + - (54)a 1

a - (lT E 2 (55)9rIa71) E g (I+ ( )a

b Cl C2
ar(br) E f er'dr' + - (56)rg b2 g,) (1+v )b2

a g
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Thus, the stresses and displacements in all three components of the

model in Figure 3 have been determined to within four constants: B1, Ci,

C2 and D V These constants can be evaluated in a straightforward way from

four continuity conditions: Continuity of radial displacement u and of

radial stress a at each of the two interfaces, r =a and r -b. Theser

four continuity conditions will lead to four simultaneous equations that

can be solved for Bi, C1, C2 and D1 . The four equations are omitted here

for the sake of brevity; they will be presented later in a dimensionless

form.

B. Glass Stress Equations in Dimensionless Form.- We note that

e S (T - T )(l -t) (57)

where t is the dimensionless temperature parameter defined earlier

(Equation (8)). Substituting this expression for e into Equations (51)

and (52)and dividing through by appropriate constants, we can convert

these equations to the form

CL C2_ - + 1 2 (58)
r " -k x2 1-vg ( )+vx2

St [ -l ++2 (59)
aWk  x _J g (1-V )x2

where

0 0t
S r S t(60)r (Tm-To)Egak t (T-To)Egk
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are dimensionless measures of a and at;

C C2_ 
=  - C2 =  (61)

(T.-T 0 )ak 2 (T-To)aka2

are dimensionless measures of C1 and C2 ; x and y are the dimensionless

radial and time coordinates defined by Equations (6) and (7); and

x

W(x,y) J [1 - t(x',y)]x'dx' (62)

1

with x' a dummy variable representing x, and t henceforth regarded as a

function of x and y; i.e., t - t(x,y).

The four simultaneous equations referred to earlier, which are to be

solved for the four integration constants, can also be put into dimensionless

form, with the following result:

1I 2 -+ v -[(c/b)2 - 1]
1-Vg (l+Vg )(b/a) 1-Vk Eg

I Ek 27u W(b/a,y)- [(c/b) 1](1-t ) + (63)

g Ek(b/a)

1 C 2 B1 Ek Ek  k a (64)
1-v l+V 1-v E E 2

g g k g g

1
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C 2 C2 I+vk+  2 D1 + b /

(+ 2t -1)_ - 2 (65)

kb/b)(b 2  kba2

C + C - B T (l+V)(1-ta) (66)
1 2 1 (.k)C at

where

ta E [t(x,y)] 1x-I  t(l,y)

(67)

tb (t(x,Y)xi-b/a -t(b/ay)

B

1 -(T. T ).

(68)
DI1 -11 -(TOT )ak

Equations (63), (64), (65) and (66) express the following continuity con-

ditions, respectively: (a) radial stress continuity at r-b; (b) radial

stress continuity at r-a; (c) radial displacement continuity at r-b; and

(d) radial displacement continuity at r-a. The simultaneous solution of

(63) through (66) will give the values of C1 and C2 needed in Equations

(58) and (59).

C. The Limiting Case c --.- The limiting case in which the outer

radius c of the base annulus becomes very large in comparison with the

inner radius b can be handled as follows: Solve Equation (65) for and
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(66) for 1 and use the results to eliminate 1 and 1 in (63) and (64)

Equations (63) and (64) will then constitute two equations in two unknowns

C and C If b/c is then allowed to approach zero in those two equations,

they reduce to

I (l -
+ E k  ) 1 - I )

1 1- E +V 2 14-v E 14-v 2
g g k g g k b

a Ek l+v 2

l Eg l+kc E- W(b/a,y)

E i+-V (l-tb) (69)

1 E k 1 - 1E k 'a-
g g k 2 g k g k1 -v E1- 2IV -v k )  E I-v k  (0

and these two equations are to be solved simultaneously for the values of

1 and C2 needed in Equations (58) and (59).

D. Numerical Evaluation of Stresses in the Glass.- By setting x

equal to x2P x3 ' ... , x,_ 1 in Equations (58) and (59), one can for any

given y obtain the values of Sr and St at all of the radial stations

i - 2,3,...,M-1 (x l, 1+ Ax, l+2Ax, ..., b/a) in the glass, including

the two interface stations (1 -2 and i -M-l). The integrals W(xi,y)

called for in Equations (58) and (59) are, in accordance with (62),

defined by

x i

W(xity) = f(x,y)dx (71)
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where f(xy) l-t(x,y). They can be evaluated numerically with the help

of the following integration formula for the integral of f(x,y) over

one grid division:

xi Ax 13f3 + -f

Wi f(x,y)dx T (- fi-2 + 13 f 1 3 f, - f+ )  (72)

xl-

where £ > 3 and

f - f(xi-2Y) i-l f(Xi-lY) , etc. (73)

The numerical integration formula (72) is obtained by passing a cubic

equation through the ordinates f1-2' f -l' fi and f i+" The W(xiy) can

be expressed in terms of the Wi as follows:

W(x2,Y) - 0

W(x3 ,y) = 3

W(x4 ,y) = W3 + W4  (74)

i
W(x1 ,y) = E W

J-3 J

Alternatively,

W(x2,y) - 0

W(xiy) - W(x 1ly) + Wi (1 > 2)
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For the special case in which the temperature throughout the package

is uniform at T., the temperature parameter t (also t and t b ) is identi-

cally zero. Then f(x,y) becomes I and Equation (71) reduces to

W(xiy) - xi - 1 (76)

At the lead-glass interface (x = x = 1) in particular, we then have

W(x ,Y) = W(x2,y) = W(,y) - 0 (77)

and at the glass-base interface (xi = XM I = b/a),

W(xi,y) = W(xM_l,y) = W(b/a,y) = (b/a) - 1 (78)

IV. COMPUTER PROGRAM

An APL computer program, ANN, that calculates the dimensionless tem-

eratures and the stresses in the glass at successive dimensionless times

after insertion of the package into the thermal shock test fluid, is given

in this section, in the pages that come after the text. The program computes

dimensionless temperature and stresses at the grid stations i = 2,3,...,M-1

of Figure 4 for the dimensionless times corresponding to the grid stations

n = 2,3,4,... (y =Ay, 2Ay, 3Ay, ... ). The program is based on the analyses

in Sections II and III.

As explained in the first thirteen lines of the program, before calling

on ANN one must assign numerical values to certain APL variables. These

variables are listed below along with their meanings.
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APL Variable Meaning

AY Ay

YMAX Value of y at which calculations should stop

NSEGS Number of radial segments in glass annulus;
equals M-2 (see Figure 4)

A A (see Equations (1))

B B (see Equations (1))

C C (see Equations (1))

D D (see Equations (1))

NUG Vg

NUM Vk

ALGM a /ak

EGH Eg/E k

BA b/a

CASE Assign to CASE the value 1 if c/a is finite,
2 if c/a is infinite

CA c/a (not used if CASE4-2)

PRINT Assign to PRINT the value I if only interface
results are to be printed, and the value 2 if
results for all the glass stations are to be
printed

The output will repeat some of the numerical input data, identified

by words rather than symbols, then give the computed temperatures and

stresses at successive times. If PRINT has been pre-assigned the value 1,

the output data will be for the interface locations only (lead-glass, then
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glass-base); if 2 the output will be for all stations in the glass, starting

with the lead-glass interface. The APL symbols appearing in the output are

listed below along with their meanings.

APL Output Symbol Meaning

x x at 1 = 2,3,..., M-1

TIME y ( Tk /p Ca 2 )

TEMP I - t (- [T(x,y) -T 0 /(T,,-T 0])

TRANSVERSE STRESS St ( (T oa

r
RADIAL STRESS S (- r)E

MAX Largest number in a preceding
line of output

MIN Smallest number in a preceding
line of output

When YMAX has been reached, a terminal message will ask DO YOU WANT TO GO

FURTHER? and give instructions for terminating or for increasing YMAX

and continuing the calculations further into time.

Following the program are the inputs and outputs of sample calcula-

tions for a test fluid and package with the following properties:

-4 2

4.051 x 10- 4 Btu/in.-sec-0F (water-to-Kovar heat transfer
coefficient)

a - 0.009 in.

b - 0.02175 in.
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c - 0.08 in.

A 0 -0.0115925 in.
Ab - 4.2874 in2

3Vt - 0.000075068 in.

Vb  = 0.154346 in.

A2 = 0.002262 in.

A1 = 0.005466 in.

N = 48 (number of leads)

k 9 1.366 x 10-5 Btu/sec-inA°Fg

Pg = 0.082 lb/in

c = 0.23 Btu/lb-°Fg

3
k 0.302 lb/in.

ck  0.105 Btu/lb-°F

v = 0.22
g

a 9 2.56 x 1 0-6/OFg

E - 8.2 x 106 lb/in.g

Vk ffi0.3

ck - 3.25 x /0-6 °F =5.85 x 10-6/OC

Ek - 20 x 106 lb/in2

leading to

A - 1.36785 (APL variable: A)

B - 6.19975 (APL variable: B)

C - 4.36151 (APL variable: C)

D - 109.89971 (APL var'.able: D)
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v - 0.22 (APL variable: NUG)8

Vk - 0.3 (APL variable: NUM)

ag/a k - 0.78769 (APL variable: ALGM)

Eg/E k - 0.41 (APL variable: EGM)

b/a = 2.4167 (APL vari-ble: BA)

c/a - 8.88889 (APL variable: CA)

c/b - 3.6781

Inasmuch as c/a is finite, the APL variable CASE was assigned the value 1

by typing CASE-l. NSEGS was taken as 5 and AY as 0.2 (trial calculations

showed that they led to a sufficiently fine grid).

In order to demonstrate both types of ourput capability, PRINT was

assigned the value 1, leading to output at the interface locations only,

then in a second calculation the value 2, leading to output at all the

glass stations. In the first calculation YMAX was set equal to 6, then

increased to 10; in the second YMAX was taken as 0.4.

The first calculation shows that S at the lead-glass interfacer

reaches an extremum value of -0.2459 (see underlined number in the line

of output for TIME - 6.4). This result will be used in the illustrative

application of the next section.
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V. ILLUSTRATIVE APPLICATION

Let us assume that the package considered in the preceding section is

subjected to level A of the MIL-STD-883B thermal shock test (Method 1011.2)

and determine the maximum radial tensile stress developed at the lead-glass

interface in the course of this test. (This is the stress that is most

likely to create a gap between the lead and the glass if the bond between

the two materials is poor.) The test fluids will be taken to be water at

1OOC and OC, and the seal will be assumed to be stress-free at room tempera-

ture (20C).

We first take note of the extremum value of S - - 0.2459 cited in the
r

previous section for this package. The corresponding extremum value of the

stress is

a - 0.2459 (T-To)Egak

- - 0.2459 (TW-T 0)(8.2 x 10 6)(5.85 x 10 
-6 ) psi/*C

- 11.80 (TOD-T o ) psi/*C

In the preconditioning step of the thermal shock test, the package at room

temperature (To a 20C) is imersed in the high-temperature fluid (TW - 100C)

and kept there long enough for the temperature to become virtually uniform

at T . Therefore T -T - 80C, and at some time during the package's dwell

in the high-temperature fluid, an extremum lead-glass interface radial

stress of

a - 11.80 (80) - - 944 psi (79)
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is achieved. In subsequent steps, the package is transferred back and forth

from the high- to the low-temperature baths after having been temperature-

stabilized in each one. Therefore, in these subsequent steps T -T will be

-OOC for the transfer from high to low, and +lOOC for the transfer from

low to high. The corresponding changes of interface radial stress will be

"r - - 11.80 (-100) = + 1180 psi (80)

and

"r - -11.80 (100) = - 1180 psi (81)

respectively.

The above are transient extremums of stress or change of stress that

occur during the temperature stabilizations. We shall also need to know

the change of stress that has taken place by the end of each step, that

is, after the package temperature has become uniform at T, the temperature

of the bath in which it resides. In order to determine that quantity, we

take note of the last paragraph of section IV, from which we find that

W(b/a,y) - (b/a) - 1 = 2.4167 - 1 - 1.4167

ta a tb -0

With this information and other numerical data from Section IV substituted

into them, Equations (63) to (66) become

1.2821 C1 - .14034 C2 + 43.653 D1 - 15.470

1.2821 C1 - .81967 C2 - 3.4843 B1 = - 1.2195

C + .17122 C2 - 26.124 D1 = - 8.3766

C + 2 - B1  .65
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Their solution is

C1 . 0.47065 C2 = 0.56874 B1 M 0.38939 D1 - 0.34239

Substituting the C1 and C2 values into Equation (58), along with the values

of the required material constants, and noting that x 1 1 at the lead-glass

interface, and that W(l,y) - 0 when the temperature is uniform (see

Equation (73)), we get

0.47065 0.56874S - 0 + .13722r .78 (1.22) (l)2

as the stabilized value of S at the lead glass interface when the packager

is brought from an initial uniform temperature of T to a final uniform

temperature of T. The corresponding stress change is

ar - .13722 (T -T 0 )Egak

- .13722 (T-To)(8.2 x 10 6)(5.85 x 10-6 ) psi/*C

- 6.5824 (TW-T ) psi/*C

In going from room temperature (To - 20C) to the high temperature bath

(T - 100C), this gives

a - 6.5824 (80) = + 527 psi (82)

In going from the high temperature bath (T = IOOC) to the low temperature0

bath (T. OC), it gives

r - 6.5824 (-100) - - 658 psi (83)
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And in going from the low temperature bath (T . OC) to the high tempera-0

ture bath (T. 100C), it gives

a- 6.5824 (100) = + 658 psi (84)

In Equations (80) through (84) we have all the information needed in

order to track the interface radial stress during the postulated thermal

shock test. The details of the tracking are presented in Table 1 in which

the units of a and of Aa (change of stress) are psi, RT stands for roomr r

temperature (20C), HT for high temperature (100C), and LT for low temperature

(OC). In reading Table 1, one should go entirely across one row before

proceeding to the next row.

The results shown in Table 1 are very interesting and informative.

Column 6 gives the steady state a at the end of each step, i.e., afterr

the temperature of the package has become uniform at the temperature of

the bath that it is in. Those stresses are seen to be not very severe,

alternating between 527 psi tension at the end of each high temperature

dwell to 131 psi compression at the end of each low temperature dwell.

However, the transient stresses occurring during the dwells, listed in

Column 4, are seen to be much more severe, ranging from a maximum tension

of 1707 psi to a maximum compression of 1311 psi. The transient tensile

stress of 1707 psi is a rather significant stress for glass, and we note

that it is developed in the thermal shock test of the very lowest level of

severity (level A). This example tends to support the findings of

Reference 24 and suggests that the thermal shock test should be used with

caution. Too high a severity level could produce excessive transient

-233-

I___ _ I__ _I__ _ _II___ __ __ _ __ __ _III__ _ C



- 444

040

fe ..4 4 - 0. F- -4

olC UO -01 --4 Sn -

a

w a p -

0 x vn 43 " 4 ' 4
V +a +

W 4 A

C4-

'4 en e4m0

W'4 "1% .7

Ga0 0 + I +

44V4

14GaG

0 0.

.4~F .a C

-234-



tensions at the lead-glass interface, possibly creating gaps there during

the teat, even for well bonded seals. Furthermore, inasmuch as the exces-

sive tensions are transient, those gaps might not be evident at the end of

the test. Another interesting conclusion to be drawn from Table 1 is that

the transient stress occurring during any step of the thermal shock test

(Column 4) and the steady-state or final stress developed in that step

(Column 6) can be of opposite sign.
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APPENDIX A: MATERIAL PROPERTIES

In this appendix are compiled material property data that could be

useful in connection with the formulas of the present report or that might

be of general interest to stress analysts, designers, and screeners of

microcircuit packages. The information has been gleaned from a variety

of sources, including manufacturers' literature, certain standard handbooks,

treatises, and monographs. Direct telephone contact with knowledgeable

individuals was another valuable source of information.

The following list indicates the categories of materials covered, each

in a section of its own: ADHESIVES, CERAMICS, FLUIDS, GLASSES, NICKEL-IRON

ALLOYS, SOLDERS, and WIRES.

Unless other conditions are specified, it is to be understood that the

data presented pertain to room temperature and standard atmospheric pressure

conditions.

It should also be understood that, in the case of manufacturers' data,

a more or less standard disclaimer usually applies, to the effect that

although the data are believed to be reliable, the accuracy of the data is

not guaranteed.

Because of the large amount of numerical data presented, it was not

considered feasible to present it consistently in dual form (i.e., customary

units and dual units). In order to assist the reader in making the con-

version from one form to another, we list a few useful conversion equations:

Temperature

5. 5.o
1 0 K -10Cl.8°F 10 F C K

9 9
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Stress or Pressure

1 psi - 6894.757 Pa = 6894.757 N/2 .006894757 MN/m

1 ksi 1 1000 psi

I G a - 145,038 psi 1 MPa - 145.038 psi I Pa .000145038 psi

Specific Heat

1 cal/gOC - 1 Btu/lbOF = 4184 J/kg*K

Thermal Conductivity

1 cal/lc.s.*C - 4.186 W/cm.*C - 241.9 Btu/ft.hr.'F = 2903 Btu.in/ft2 .hr.F

Density

1 g/cm 3 62.428 lb/ft = .03613 ibn 3

1 lb/ft .01602 g/cm
3
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1. Adhesives

Here we present a compilation of material property data for a few

adhesives of possible applicability to microelectronics. Much of the

data presented is taken from company data sheets reproduced in

"Investigation of the Application of Adhesives in Hybrid Integrated

Circuits" (Report W2-683-TN04, U.S. Naval Undersea Center, June, 1972;

abridgement available from Government-Industry Data Exchange Program,

Corona, CA 91720 as GIDEP Report E151-1156); this report also contains

some valuable qualitative information on adhesives. The rest of the data

has come from additional company data sheets and brochures. The

data presented do not reflect the considerable degree of scatter that may

be present in measured shear strengths if pains are not taken to achieve

uniformity of bond line thickness and filleting in the preparation of the

test specimens. Some information on this type of scatter can be found in

the report, "Organic Adhesives for Hybrid Microcircuits," by F.L. Perkins

and J.J. Licari, Autonetics Div. of Rockwell International Corporation

(3370 Miraloma Avenue, Anaheim, CA 92803), July 31, 1975, prepared under

Contract NAS8-26384 for the George C. Marshall Space Flight Center,

Alabama 35812.

"Ablefilm" and "Ablebond" Adhesives.- The following two tables give

data on the "Ablefilm" and "Ablebond" adhesives manufactured by the

Ablestick Laboratories (833 W. 182 St, Gardena, CA 90248). The "Ablefilm"

adhesives are epoxy adhesives in film form. Those designated ECFS18 and

ECF535 contain fillers that make them electrically conductive.
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Designation Ablebond 71-1 Ablebond 606-1 Ablebond 761-6 Ablebond 798-1

Polyimide Epoxy paste. Epoxy paste, Epoxy paste
Description paste. elec- electrically electrically

trically conductive conductive
conductive
1000 to Au 1900 to Au 25C 1250 >6400 to Au

Lap 1500 to Al 150C 1500 >6000 to Al
Shear 1200 to Ag 200C 700
Strength, 1500 to Brass to gold-
psi 800 to Cu plated stain-

1200 to Solder less steel
Lap Shear
Strength, psi >57O0
after 11 days

@ 185F, 100% RH _ ,
Thermal Conductivity. 1.2 1.3 @ 250F
Btu/ft-hr.*F

"Epo-Tek" Adhesives.- The table below gives some data on the "Epo-Tek"

adhesives manufactured by Epoxy Technology, Inc., (65 Grove St., Watertown,

MA 02172).

EoTkThermal Lap Shear Strength, psi
Epo-Tek Description Cnductivity,

No.Btu-in/ft2.hr-*F value, psi sdherends

H1l 1000
R20

H21
through Electrically 1000 Aluminum
924 Conductive

H40 Gold-plated
941 2000 - 5000 beryllium
843 copper

154 Electrically 3100 Aluminum
55 Insulating 2000 Aluminum

H61 - 7.55
H72 Thermally 6.0 2500 Aluminum
M74 Conductive 7.6 2500 Aluminum

Rao Electrically 2000Conductive
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Transene Company Adhesives.- The Transene Company (Route 1,

Rowley, MA 01969) gives the following data for its epoxy adhesives. Those

with the Epoxy-10 through Epoxy-17 designations are electrically insulative,

the rest are electrically conductive.

Thermal Thermal

Designation Conductivity, Expansion Shear Strength, psi
tu. in/ft2 .hr.F Coefficient,Btu-i /ft h .*F i1-6/C

Epoxy-0 25-IOOC 2000 min
Epoxy-11 15 40
Epozy-12 150C 1300 min

@ 25C 0 125C (1000 hrs)
Epoxy-13 4 30 2000 1500
Epoy-14 12 23 1500 1000
Epoxy-15 4 30 2000 1500

Epoxy-16 4 35 2000

Epoxy-17 10 23 2000

Ohmex - Ag 100 50 1000

Silver-Epoxy, 100 50 1500
Types I & II
Silver-Bond
Types 40.50,60 100 1500
Microcircuit Cured 1/2 hr 1500(K)
Sicver, 21(K) 0 135C >1500(L)

Siler Ag1(20K)
Types K & L 20(L) 0Aged 200 hr00

@ 175C

Microcircuit Initial @ 175C 3500

20 50 After 200 hr 2750Silver, Type___ @ 175C 2I50

Microcircuit Initial @ 175C 1500

Silver, Type 0 22 50 After 200 hr 1000Silver,__ype_0_@ 175C 1000
Gold-Epoxy 1000
GE-10,20.30,40
Nickel-Bond.
Types 40,50,60 6.1 1000
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Hysol Adhesives.- In its brochure the Hysol Division of the Dexter

Corporation (15051 E. Don Julian Road, Industry, CA 91749) gives the

following data for its epoxy adhesives:

Shear Strength psi Thermal Thermal Expansion
Desipacion 77F I -40F 180F Conductivity, Coefficient,Cured 2 hrs -

C r 2 , Cured 7 days @ 77F 10-4 cal/cm.s-*C 10" 6 /PC

IC 2300 1750 1750 1600 10.4 30.3

907 3200 3000 1250 400 6.8 45

6C 2100 2000 1600 1850 10.7 24.4

615 3100 2950 2700 150 9.0 50.6

309 1630 1865 1020 960 5.0 53.9

608 2500 2000 1100 150 4.8 89.6

0151 2600 1850 2000 500 4.7 102.8

3x 2600 2200 2000 150 8.2 88.6

9340 2300 2000 2100 1850 7.3 29.4

9410 3600 3500 2500 450 5.2 50.4

Technical Wire Products, Inc.- This company, located at 120 Dermody St,

Cranford, NJ 07016, gives the following strength properties of two of its

conductive epoxy adhesives in its Data Sheet CS-724, dated 1975:

Minimum Shear Strength, psi

Designation Cured at R.T. Cured at 210F

72-00008 1000 900

72-08116 1400 1350

-242-

I ' mr , .. ... . . _ill



2. Ceramics

Ceramics are used for a variety of purposes in microcircuit packaging --

for example, as lids, bases and substrates in flatpacks. Here we summarize

the thermal and mechanical properties of a number of ceramics, using data

provided in several suppliers' literature.

One of the main suppliers of ceramics for microelectronic applications

is the 3M Company (Chattanooga, Tenn. 37405), which produces a line of

ceramics under the trade name "AJSiMag." The following two tables give

the properties of a selection of those ceramics.

Aluina (A1 2 0 3 )

3tta 82 94Z 942 941 961 99.52 995 95 99

AISUI
W 

Number 860 606 620 771 777 614 753 772 638 805

Specific Cravlty 3.8 3.68 3.86 3.62 3.7 3.70 3.85 3.89 3.85 1.96

Color white russet brovc white black white white White white off-whkr 4

Thereat 16-6/l 70-4007 3.3 4.1 3.6 3.7 3.7 3.6 3.7

70-1300F .0 4.6 4.2 4.2 4.2 4.1 4.2
Expansion 70-1650F 4.1 4.8 P -.4 4.3 ..3 64.1 .)
Coeff. 10 

6
/-C 25- 300C 6.5 :4 6.0 ;.4 6.4 6.7 6.6 6,5 6.7

25:700C 1. 7. 7 7. 2 8.2 7.5 1.6 7.4 7.
25-900C 7.71 8.0 7.4 8.7 7.9 7.8 7.7 7.7 7 ;

Tensile Strength. kal 1201 24 25 28

Compresive Strength. kaL 400 3S0 300 315 240 375 380 370 4.5

Vlezural Strength, k6
-  

74 45 37 46 30 46 AS 70 65 100

Modulus of Elasticity. 10 pt 43 7 55 55 50 58

Sheer Modulus, 10- p 17 19 22 22 I

Poiso's .i2 .22 .22 .22 .22
25C 12 192 244 2 255

Itu-tu 300C 99 99 119 128 I 130

theril fic 2. hr.*? 500C 70 70 75 78 81

WK_ _ 46 46 58 52 1 61Conduct ivity252772. 
3.1 6. 67

. 300C 14.2 14.2 17.1 18.4 18.7
500C 10.1 10.1 10.8 11.. 11 .6
8CC 6.6 6.6 8.3 7.5 8.8
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Soryllia Titania Footerit Alkaline Earths
Mterial (Sao) (TtO2 ) (2HO SiO 2) (porcelains) (J2P3 5 )

"AISI
W  

Nuaber 794 826 -- 192. 193 243 842 531 825

spec fie Gravity 2.92 2.65 4.0 2.8 2.9 2.6 2.8

Color white Vhite tan, sey buff off-vhite white white

nerml . @O-/., 70-400F 4.2 4.4 5.6 5.2

is e 70-1300F 4.7 5.0 6.2 5.7
70-1&50? 4.6 6.5 5.7

ca~ ,- 25-300C 7.5 6.7 8.3 10.0 9.4 4.4 1.4

S25-700C 8.4 8.5 9.0 11.2 10.2 5.5 3.3
-!900C 8.7 8.7 11.7 10.3 4.5

Tenile Strenth, ket 23 23 7.5 10 11

Copreseive Strength, Iai 260 >200 100 85 90 200 230

netortal Strength, kat 33 '32 20 20 20 15 25

Moduluo of Elasticity. 106 psi 47 47 21

Eear rodulue, 106 pat 19 19 9

Pa.om'e latto .23 .23 .23

Btu-to 25C 1741 '1600 55 55
2 300C 841 35 35

Ibermal f
2
.hr-* 500C 522 29 29

oadlc vi __ 800C
25C 250 7.9 7.9

3ooC 121 5.0 5.0
500C 75 4.2 4.2
SOOC

The following is a selection of data from the brochure of the 
Center-

flex Ceramics Corporation (188 Eighth Ave., Hawthorne, NJ 07507).
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Kyocera International, Inc. (8611 Balboa Ave., San Diego, CA 92123)

is another supplier of ceramics for microcircuit applications. The following

is a selection of data from its brochure.

lliliii I~iH {ll3)flutciia sit-titt Licht, Ucll . C-t

092 1 992 19.2 5z a "i.1 W I "1 (2loslo*iO) (M0-s0) (Lt2O.Al 2 0,lO (11021
-m 444 A-451 A-473 1-M A-4?9 V A-480~ A 90 A-490 F-1120 '-1123 1-210 1-2 1 LS"0 T-74 T-792 tC-20

(lo~t dat . .bt

. 1p~ l i 4 4 0 -4 2 - 7 1 h i t . 4 b i t . 9 w h i t . 1 .4t y i t 0 A -i t 4 ,_ h i t . - -

3. .t 2.6 3.6 3.6 1.6 3.9 3.8 3.9 2.6 2.6 2.7 1.1 2.2 1.7 4.8 4.2

it ."4k. 40 I0 46 40 44 47 44 40 17 24 20 24 n) L 14 II 21?

f ab.124 136

9.t 9.., 1.: t. .

Sptidle

16l*c2. 9 10 0. 14 .4 21 2) 6.9

l..ff2.1c t.I *-Uoc 2.2 7.7 7.1 7.6 7. 7 I.? 2 .6 I 7.7 2.78.1 9.1 0.4 9.0-

060. 0.20 0.19 0.19 0.9 0t .19 0.19 0.19 0.19 0.19

-246-i

I I I I n ,14 - ,i/



Data are given below on some of the ceramics of the Coors Porcelain

Co. (600 Ninth Street, Golden, Colorado 80401). Where minimum values

are given, they are "a minimum mean for a sample of 10 specimens."

Alunla (A12033) Beryll (3.O)

____ 6 '962 99.51 99.5z 99.92 99.9Z 962 99.5Z

Deslgnaton AD-94 JAD-96 ADS-96F AD-995 AD0S-995 AD-999 VISTAL BD-96 ID-995

Speclfic 3.62 3.72 3.75 3.89 3.86 3.96 3.99 2.80 2.85

trans- I
Color whlte wite white ivory Ivory ivory lucent blue white

white
otoath 25C 305 300 - 380 - 550 370 1 225 310

Stir.3tI lO00C 50 - - -- -- 280 70 - 40

Flexural 25C typ 51 52 60 55 68 80 41 25 40
St mrth. 25C wU 46 47 - - - 75 - 20 35

kha. IOOC typ 20 25 - - - 60 25 9 -

__000C__ BID 17 20~n - - ....5iL. -- - -
Tensle 25C 28 23 - 38 - 45 30 - 20
Stutusth. 100oC 15 14 - - - 32 1 - 5

hal

Iodules of
Ilasltlcty. 41 4 - 54 - 56 57 44 51

106 pal .

Module, 17 18 - 22 - 23 23.5 17 20
to06 Pat,

Malk
Modules. 24 25 - 3 - 33 34 31 35
106 gt L

Seale
Vel-oly, 8.9 9.1 - 9.8 - 9.9 9.9 10.7 11.1

P.ilm. .21 •21 -- .22 - .22 .22 .30 .26
Ratio I- __

-200 -2C 3: , ". - -3:' 3.4 3.4 2.4 2.4
earmi 25 -200C 6.3 6.0 6.2 7.1 3.9 6.5 6.5 6.3 6.4

IL inm 25 -500C 7.1 7., 7.0 7.6 6.7 7.4 7.4 7.5 7.7
Cfficiest, 25 -SOOC 7.6 8.0 7.7 6.0 7.3 7.8 7.8 6.4 8.5

10-/ C 25-1000c 7.9 8.2 8.1 8.3 7.7 8.0 8.0 8.9 8.9
25 -1200C 8.1 8.4 - - - 8.3 8.3 9.2 9.4
20C r8. 24.7 26 35.6 32.6 38.9 39.7 159.0 280.3

Therm cc 14.2 18.8 20.1 25.9 28.9 27.6 28.4 133.9 200.8
Coducttivty OOC 7.9 10.0 11'.1 12.1 12.6 13.4 13.4 66.9 83.7

______ 800C 5.0 4 5.4 - 6.3 - 6.3 6.3 25.1 29.3

Specific
est 880 880 880 880 880 880 880 255 1297
100C.
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Augat, Inc. Ceramic Materials Division (12 Coffin Ave., New Bedford, MA,

02746) gives the following properties for three of its alumina ceramics:

Al20 3 Content (min) 95.0% 97.6% 99.5%

Compressive Strength, ksi >300 >250 >300

Flexural Strength, ksi 64 46 62

Specific Gravity 3.70 3.76 3.89

Thermal Conductivity,

cal/cm.s-*C .055 .064 .070

The Alberox Corp. (Industrial Park, New Bedford, Ma 02745) gives the

following data for its 95% alumina ceramic (designation A-950):

Color white

Specific Gravity 3.69

Tensile Strength, ksi 31

Compressive Strength, ksi 385

Flexural Strength, ksi 53

Modulus of Elasticity, 106 psi 41

Thermal Expansion Coefficient, 10-6/0C 9.2

Thermal Conductivity, Btu-in/ft2 -hr-OF 145

Specific Heat, cal/g.*C 0.19
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Ceramaseal, Inc. gives the following thermo-mechanical data for its

alumina ceramics:

85% min. 92.5% min. 96% min. 99% min.
Material Alumina Alumina Alumina Alumina
Tensile
strength, 17.5 18.5 25 34

kat
Compressive

St rength 240 280 600 300
ksi

Flexural

Strength, 4 46.2 60 58
kal

Thermal
Conductivity 0.031 0.02 0043 0.036¢al/c-. & C
Thermal 25 -200C 5.68 6.18 6.5 6.
Expansion 

8.9 8....9.Coefficient, 0 -600 7.83 8.5 8 .9
1O-6/6C _

The following table gives properties of three of the alumina ceramics

obtainable from Duramc Products, Inc. (426 Comercial Ave., Palisades Park, NJ):

aTeral 96Z 99%" 99.7MaeilAlumina Alumina Alumi~na

Designation NT-960 HT-990 HT-997

Color white white ivory

Specific Grav inty 3.76 3.85 3.94
Tensile Strength, kai 25 30 30

Compressive Strength, kai 3 75 380

plexural Strength, k at 46 50 50
M odulus of Elasticity, 10 6 p si 45 so 55

Therml lO-6 /OF 3.5 4.1 3.5
xpan son 

.. ...Coefficient 10-6* 6.4 7.4 6.4

Thermal Br u-in/ft2-hr-*F 220 •205 225 -,
Conductivity W/R. "g 31 .. .29 1 32

Specific stu/lb.*F, cal/g.*C 0.19 0.20 0.20

Beat J/kt. *K 795 837 837
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A particular 99.5% alumina ceramic utilized by the Sandia Laboratories

is reported by them to have the following properties ("Ceramic Substrates

for Hybrid Microcircuit Applications," by R.E. Kuntson, Report SLA-73-0886,

Sandia Laboratories, Albuquerque, NM 87115, Sept. 1973):

Color white

Specific Gravity 3.90

Compressive Strength, ksi >400

Flexural Strength, ksi 66

Thermal Conductivity, 2OC .075
ca1 / cn •s •C 100C .065

400C .028

Thermal Expansion 25 - 200C 6.0
Coefficient, 25 - 500C 7.3

10-6/PC 25 - SOOC 7.9

The Corning Glass Company of Corning, NY produces a white, non-porous

machinable glass-ceramic with the trade name MACOR and the company code

number 9658. The following data is abstracted from the Coming company's

brochure on this material.

Specific Gravity at 4C 2.52

Thermal Expansion RT to 400C 9.4
Coefficient, RT to 600C 11.0

10-6/-C RT to SO0C 12.3

Thermal 25C 0.004 cal/cu.s.*C
Conductivity 77F 11.68 Btu-in/hr-ft 2 -'1

Plexural Strength, ksi 15

Compressive Strength, ksl 50

Modulus of Elasticity, 106 psi 9.3

Shear Modulus, 106 psi 3.7

Poisson's Ratio .26

-250-



At least two companies manufacture alumina substrates in tape form for

thick film and/or thin film microelectronic circuits. They are Materials

Research Corporation (Orangeburg, NY 10962) and Coors Porcelain Company

(600 Ninth Street, Golden, Colorado 80401). Some of the properties of these

substrates are listed below. The three Materials Research Corp. ceramics have

the general company designation Thin Film "Superstrate" 996.

Source Materials Research Corp. Coors Porcelain Co.

Hi-REL996A Hybrid Commercial Thick Thin
Designation Std 996 S 996B 996C film film

Aluaina 

ADS-96R ADS-995

Content, Z 99.6 99.6 99.6 96 99.6

Specific 3.86-3.90 3.87 > 3.81 3.74 3.89
Gravity

20C 0.063 0.078
Thermal 25C 0.090 0.090 0.090
Conductivity, lOOC 0.048 0.069
cal/cm,..C 300C 0.050 0.050 0.050

400C 0.029 0.030
500C 0.038 0.038 0.038
25-200C 6.3 5.9

Thermal 25-300C 6.3 6.3 6.3
Expansion 25-500C 7.1 6.7
Coefficient, 25-600C 7.1 7.1 7.1

10-6/0C 25-800C 7.3 7.3 7.3 7.6 7.3
25-1000C 8.0 7.7

Flexural Strength, ksi 90 90 90

Compressive Strength, 400 400 400
ksi
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Porcelain enameled steel has been proposed as an alternative to pure

ceramic substrates. According to one supplier of such substrates (The Erie

Ceramic Arts Co., 3120 W. 22 Street, Erie, PA 16505), 20 gauge steel

(.034-.038 in.) is normally used, and the enamel can be applied to only one

or to both sides of the steel in a thickness that is normally 5 or 6 mils

(per side) but that can be varied if requested from 3 to 15 mils. The

following properties are cited for the two components:

Porcelain Steel

Enamel

Thermal Conductivity,
W/cm. C .01 .45

Thermal Expansion
Coefficient, 12.5-13.5 15

10-6/ 0C

The enamel is fired at 800 to 870 C. The larger expansion coefficient of the

steel puts the porcelain in a state of compression at room temperature.
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3. Fluids

Here are assembled some thermal and mechanical properties of several

fluids (including air) that are of possible use as the low or high tempera-

ture fluids for thermal shock and thermal cycling tests (e.g., those of

Methods 1011.2 and 1010.2 of "Test Methods and Procedures for Microelec-

tronics," MIL-STD-883B, Dept. of Defense, 31 Aug. 1977).

3M "Fluorinert" Fluids.- The following table and graphs give properties

of seven of the "Fluorinert" liquids manufactured by the 3M Company of

St. Paul, Minnesota. Three of these substances (FC-40, FC-70, FC-77) are

among the thermal shock test fluids suggested in Method 1011.2 of the

MIL-STD-883B document referred to above.

Designation PC-12 FC-84 FC-77 FC-104 FC-75 FC-40 FC-43 FC-70

Boiling 9 F 133 176 207 214 216 311 345 -19
Point OC 56 80 97 101 102 155 174 ... )

Pour -F -13 -139 -166 -85 -126 -70 -58 -

Point [C -90 -95 -110 -65 -88 -57 -50
Beat of Vaporization 38 35 36 40 38 31 30 29
at B.P., Btu/lb

214F 0.230
Specific 230F 0.234
Beat 250F 0.236
of the 300F 0.242
Vapor, 350F 0.246
Btu 400F 0.250

lbF 450F 0.252
500F 0.26

Thermal 216F 0.0080
Conducti v- 250F 0.0112
Ity of 30OF 0.0251
the Vapor, 350F 0.0135Dtu

Btu . 38OF 0.0130
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UCON 100.- "UCON 100" is a suggested high temperature fluid for levels

D and F of the MIL-STD-883B thermal shock test. This product, which is

sold by the Blue M Electric Co. (Blue Island, Illinois), originates as

"UCON Heat Transfer Fluid 500" of the Union Carbide Corporation (270 Park

Avenue, New York, NY 10017), where it also is designated as "UCON Fluid

50-HB-280X." Its following properties are taken from graphs in the 1981

"UCON Heat Transfer Fluid 500" brochure of the Union Carbide Corporation.

The thermal conductivity values given below differ somewhat from those cited

in the Blue M Electric catalog for UCON 100; however, being the more

recent, they are also probably the more reliable. The pour point of this

fluid is given as -37C (-35F) and the boiling point as >260C (500F).

Temperature Thermal Conductivity, Specific Heat, Density,
OF 6C Btu/ft.hr.°F Btu/lb. F lb/ft 3

0 -18 0.100 0.436 65.7

100 38 0.095 0.480 63.5

200 93 0.090 0.517 61.0

300 149 0.085 0.543 58.7

400 204 0.080 0.560 56.1

500 260 0.075 0.570 53.6

Nitrogen.- Liquid nitrogen is the suggested low-temperature fluid

for levels E and F of the thermal shock test in MIL-STD-883B. Nitrogen

has a melting point of -209.86C and a boiling point of -195.8C. Its heat

of vaporization at the boiling point is 2.80 kilojoules per gram atom

(- 47.6 cal/g - 85.6 Btu/ib). Some of its other properties at 1 atmosphere

absolute pressure are given in the following table.
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Ste Teup.rature Thermal Conduccvtry Speclfir Heat Densitye F SC Btu/ft.hr.;v Btu/lb . F lblfti

Uquld -345.7 -209.86 .0945 .48 54.5

-342 -208 .0924 .48 54.0

-333 -203 .0869 .48 52.5

-324 -198 .0815 .48 51.1

-320 -195.8 .0793 .48 50.4

a" -320 -195.8 .266

-315 -193 .00" .277

-297 -183 .0050 .243

-294 -181 .0051 .256 .237

-279 -173 .0055 .218

-261 -163 .0061 .197

-243 -153 .0065 .180

-225 -143 .0069 .165

-207 -133 .0075 .153

-189 -123 .0080 .143

-171 -113 .0085 .134

-153 -103 .0091 .126

-135 -93 .0096 .119

-117 -83 .0101 .113

-99 -73 .0106 .107

-63 -53 .0116 .0970

-27 -33 .0124 .0889

6.6 -13 .0132 .0820

32 0 .0138 .249 .0781

44.6 7 .0141 .0762

80.6 27 .0150 .0711

117 47 .0158

122 5o .0159 .0660

171 77 .0169

212 100 .0178 .0571

261 127 .0189

302 150 .0197 .0504

351 177 .0207

392 200 .0215 .250 .0450

41 227 .0225

531 277 .0241

572 300 .0249 .0372

621 327 .0258

711 377 .0273

752 400 .233 .0317
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Water.- Water is the MIL-STD-883B suggested fluid for level A of the

thermal shock test. Some of its properties at atmospheric- pressure are

tabulated below.

Temperature Thermal Conductivity Specific Heat Density
State OF  OC Btu/ft.hr. F Btu/lb. F lb/ftf

Liquid 32 0 .33 1.00 62.5

50 10 .333 1.00 62.5

100 37.8 .363 1.00 62.0

200 93.3 .382 1.00 61.2

212 100 .345 1.00 59.9

Steam 212 100 .0145 .489 .0372

240 116 .0148 .482 .0356

280 138 .0159 .475 .0336

320 160 .0170 .471 .0322

360 182 .0182 .470 .0316

400 204 .0193 .471 .0289

500 260 .0226 .474 .0258

600 316 .0260 .482 .0233

700 371 .0297 .489 .0213

Its heat of vaporization at the boiling point, 212F, is 970 Btu/lb (540 cal/gm).

Air.- The corresponding data for dry air are given in the following table.

Air is the fluid generally used in temperature cycling.
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Temperature Thermal Conductivity Specific Heat, c DensityP
OF "C Btu/ft.hr. F Btu/lb."F ibf t3

-300 -184 .0050 .252 .236

-250 -157 .0064 .244 .181

-200 -129 .0078 .243 .145

-150 -101 .0092 .242 .123

-100 -73.3 .0106 .241 .107

-40 -40 .0121 .24 .092

-20 -28.9 .0126 .24 .089

0 -17.8 .0131 .239 .0863

32 0 .0140 .239 .0806

60 15.6 .0146 .240 .0763

100 37.8 .0155 .241 .0709

150 65.6 .0166 .241 .0650

200 93.3 .0176 .242 .0601

250 121 .0186 .243 .0558

300 149 .0195 .244 .0520

350 177 .0205 .245 .0488

400 204 .022 .246 .0460

450 232 .023 .247 .0436

500 260 .024 .248 .0413

550 288 .025 .249 .0391

600 316 .026 .251 .0373

700 371 .027 .253 .0341

800 427 .028 .256 .0314

900 482 .030 .258 .0291

1000 530 .032 .263 .0271

1500 816 .040 .277 .0202

2000 1093 .047 .287 .0161

2500 1371 .046 .291 .0133

3000 1649 .054 ..296 .0114
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4. Glasses

Corning Glass Data.- Mechanical and thermal properties of a number of

glasses manufactured by the Corning Glass Works of Corning, NY are presented

in the tables that follow. The terms working point, softening point,

anneal point and strain point, that appear among the column headings, refer

to temperatures at which the glass has certain viscosities. The following

definitions of these terms are adapted from the report, "Thick Film Glasses,"

by R.W. Vest, Purdue University, West Lafayette, Indiana 47907, Nov. 15, 1978

(final technical report to the Naval Research Laboratory under contract

N00173-77-C-0142):

Working Point - The temperature at which the viscosity is 103 Pa-s (104 poises).

This temperature is the upper end of the working range, which extends from

a viscosity of 106.6 to 103 Pa-s (107.6 to 104 poises).

Softening Point - The temperature at which a fiber elongation rate of

1 m/min is measured by ASTM Method C-338. For a glass with a specific

gravity near 2.5, the softening point corresponds to a viscosity of

106.6 Pa.s (107.6 poises).

Anneal Point - The temperature at which a fiber elongation rate of

0.0136 cm/min is measured by ASTM Method C-336. Internal strains will

be relieved in about 15 minutes at this temperature, and the viscosity

is approximately 1012 Pa-s (1013 poises).

Strain Point - The temperature at which a fiber elongation rate of

0.00443 cm/mmn is measured by ASTM Method C-336. Internal strains will

be relieved in about 4 hours at this temperature, and the viscosity is

approximately 1013.5 Pa-s (1013 poises).
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The "set point," which appears in a column heading related to thermal expan-

slon, is defined as the strain point plus 5*C.

The graphs that follow the tables give more detailed thermal expansion

and viscosity data for some of the glasses. For two of the glasses (codes

7056 and 7059) the graphs include thermal conductivity as a function of

temperature, and for one of these (7056) also specific heat as a function

nf temperature.

Coming Seal Viscosity Data. "C Density Th. Exp. Coeff.. 10"C
Gla Temp., Working Softening Arneal Strain 3 0 to 25 C to
Coda C Point Point Point Point g/Cas 300 C Set Point

T1918i 415 350 312 5.2 68
0081 1000 696 516 473 2.47 93.5

0120 980 985 630 435 395 3.05 89.5 99

1415 776 654 620 3.64 79 97

1416 '63 386 364 5.26 81 91

1417 427 356 336 5.60 9 96
7040 1050 1080 702 690 449 2.26 47.5 54

7050 1050 1027 703 501 461 2.24 46.0 51.1
7032 1050 1.26 712 480 436 2.27 66.0 53.1
T0M 1030 1oss 718 512 472 2.29 531. 54.5

7059 1160 844 639 593 2.76 46.0 50.1

7062 975 956 680 488 450 2.31 49.0 57
7063 917 635 488 455 3.13 45.5 54.5

7070 1075 1068 496 456 2.13 32.0 39

720 1230 873 624 576 2.62 65.0

7555 450 415 350 330 3.7 90 as

7556 430 330 4.68 67 67 (to 300 C)
7570 470 560 440 363 362 5.42 84 91.9

7572 650 370 -6.3 95 95

7576 750 646 552 527 -6.3 34 45 (to 750 C)
7575 650 310 -6.3 89 89 (to 450 C)
7578 530 645 5.82 65.4 70 (to 460 C)
7501 630 375 6.45 97 97

7583 630 370 -6 63 83 (to 430 C)
7856 415 430 365 309 5.1 68 68

7509 40 335 -6 so 78 (to 00 C)

7590 660 374 64.5 97 97
7392 425 373 6.65 97 97
7593 650 470 5.6 42 (n) 42 (to 440 C)

(a )

7394 S10 460 -5.6 47.6 59.4 (to 420 C)

7595 415 362 97
7732 630 315 5.00 91.6 -82 (to 420 C)
7740 1252 621 $60 510 2.23 32.5 37
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Corning Seal Viscosity Data, "C Density, Th. Exp. Coeff. 10"C
Glass Temp., Working Softening Anneal Strain S/Ca3 0 to 25 C to
Code 6C Point Point Point Point 300 C Set Point

8161 600 435 400 3.99 90.0 95

8445 714 623 592 4.03 84 100

8463 377 316 300 6.22 104.0 105

8830 708 501 460 2.24 49.5

8870 800 823 578 427 389 4.33 91.0 96.2

9010 1000 646 446 408 2.66 89.0

9013 1000 659 462 423 2.64 89.0

9108 742 538 496 2.35 53

9119 754 512 465 2.35 53

9155 1000 729 557 515 2.67 88.5

9182 510 450 369 347 4 . 8 0 (b) 79.0 83

9362 975 975 627 435 395 3.1 91.5 101.5

9363 975 627 435 395 3.08 89.5 99.3

9365 995 630 434 394 2.55 91.5 102.8

(a) Data are for glass fired at 640 C. If fired at 540 C, the 0-300 C expansion

coefficient is 54 z 10-7/6C.

(b) Preform density

Corning Specific Thermal Elastic Moduli, Poisson's Modulus of
Glass Heat, Conduc- 106 psi Ratio Rupture,
Code cal/g. C tivity, Tensile Shear v kni

cal/c.s. c E C

T1911F .0023

0120 .14 .0018 8.6 3.5 .22

7040 8.6 .23

7050 8.7 .22

7052 8.2 3.4 .22

7056 SEE GRAPHS 9.2 3.8 .21

7059 GRAiL 9.8 3.8 .28

7070 7.4 .22

7570 8.0 .28

7572 6.7 2.62 .27 -6 (-1.5 at 400 C)

7574 9 10 (12 at 500 C)

7575 7.44 3 .25 6
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Technology Glass Data.- The Technology Glass Company (390 Potrero Ave.,

Sunnyvale, CA 94086) supplies glasses that are intended for microcircuit

package sealing. Some of the properties of these glasses are tabulated

below. Except for the thermal conductivities, which were obtained through

telephone contact with the company, all of the data are taken from the

Technology Glass Company's brochure CD180-0.

Technology Equivalent Sealing Softening Density, Thermal Thermal
Class Code Codes Temp., Point, g/cM3  Exp. Coeff. Conductivity,

(30-Z50 C), cal/c,-a.°C10- 7/6c

CV-lll 485 380 5.92 68.8

7583 485 370 6.0 84.0
LS-OUIO KC-lLS_0110 NCG- 460 400 4.77 53.0 .00197NCG-556

LS-0113 KC-IM
NCG-560 450 400 6.85 64.0 .0021
DC-5 7

LS-0802 NCG-558 410 360 6.78 77.0

LS-0803 KC-400
NCG-564 400 350 7.19 67.5
DC-10

TG370 400 320 6.25 78.0

XS-1175 420 345 4.70 74.0

XS-1175M 420 345 4.70 74.0

7585 415 365 5.1 67.5

T191BF KC-402 415 350 5.2 68

LS-0120 NCC-566 415 385 6.92 67.5

LS-I01 NCG-569 410 370 5.74 65.5
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High Expansion Coefficient Glasses.- The Westinghouse Electric Corp.,

under contract to the Lewis Research Center of the National Aeronautics and

Space Administration, has developed a series of high expansion coefficient

glasses which are described in the following report: "Development and Evalua-

tion of Controlled Viscosity Coatings for Superalloys," NASA-CR-72520 (NTIS

designation: N70-14570). The characteristics of three of these glasses, as

given in NASA Tech Brief 70-10429 (Dec. 1970), are listed below. The sag

point is defined as "the temperature at which the glass begins to soften or

flow."

Glass Sample No. 53 54 6

SiO2  39.6 37.3 64.8

Na 20 11.6 11.8 9.6

A2 03 18.4 22.4 9.4

Composition K20 ---- ---- 13.1

MO ---- ---- 3.1
(wtZ) g

CaO 18.4 14.0

TiO2  6.9 4.7

BaO ---- 4.7

NaF 5.1 5.1

Sag Point, *C 593 602 530

Thermal Expansion

Coeff., 10-7/OC 111 94 131
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Additional Strength Data.- In the above tabulations modulus of rupture

data were given for three of the Corning glasses. Here we give some additional

information, qualitative as well as quantitative, on the mechanical strength

of glass.

At room temperature glass is a brittle material. That is to say, it can

be assumed to remain perfectly elastic up to the point of fracture, and

fracture occurs when the maximum tensile stress reaches a critical value.

The Corning company's booklet on "Properties of Glasses and Glass-Ceramics"

states that theoretical calculations place the intrinsic strength of glass

as high as 5 x 106 psi and tests on very small diameter glass fibers

(5 x 10- 5 in.) have shown tensile strengths on the order of 106 psi, but

"the useful strength of glass is but a small fraction of these figures

because of stress concentrations introduced by surface imperfections." The

booklet goes on to say that 1/4 in. diameter rods with pristine surfaces may

show tensile strengths of 250,000 psi, but normal handling in service may

introduce surface imperfections that reduce this strength to around

10,000 psi. For an adequate design safety factor, the booklet suggests a

1000 psi working stress for annealed (stress-free) glass under sustained

load for 1000 hours or more, regardless of the chemical composition of the

glass.

From the above discussion it is clear that there is a size effect on

the strength of glass, related to surface flaws. G.O. Jones ("Glass,"

John Wiley & Sons, Inc., 1956, p. 94) describes this effect in the following

terms: "The average strength is a function of specimen size, smaller specimens

being, on the average, stronger than large specimens. Reduction by a factor

of 10 in linear dimensions causes an increase of about 10 percent in the

See also Section IX of Chapter 1.
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average strength. A corollary to this is that higher values are always

observed in bending than in tensile tests -- because the maximum stresses

are here applied to only a small part of each specimen."

The problem of strength prediction for glass is further complicated

by the phenomenon of "static fatigue" -- that is, the dependence of static

strength on the duration of the applied stress. This dependence is

illustrated by the following data for glass broken in flexure tests at room

temperature (abstracted from graphs in E.B. Shand's "Glass Engineering

Handbook," 2nd edition, McGraw-Hill Book Co., Inc., NY, 1958, p. 51):

Duration of Breaking Stress, ksi
stress, Annealed Glass Annealed Glass Tempered Glass
seconds Tested in Air Tested in Vacuum Tested in Air

0.1 20 25

1 16 24.5 33

10 13.5 24 31

100 11 23.5 29.5

1000 9.3 23 28

10,000 8.1 23 27.5

100,000 7.5 23 27

1,000,000 7 23 26.5

10,000,000 6.9 23

Shand states that "for loads of indefinite duration, the breaking stresses are

of the order of 40 to 45 percent of the 5-sec breaking stress." The data in

the above table suggests that atmosphere and humidity effects may also play

a role in the static fatigue of glass. There seems to be little or no infor-

mation available on the conventional fatigue of glass.

The strength variability of nominally identical specimens IL somewhat

greater for glass -- especially annealed glass -- than for metals. In order
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to illustrate this variability we'give below the probability of breakage as

a function of stress for three types of float glass, as cited in the booklet

entitled "PPG Glass Thickness Recommendations to Meet Architects' Specified

1-Minute Wind Load" (April 23, 1979, PPG Industries, Inc., Pittsburgh, PA

15222).

Stress, psi

Probability Annealed Glass Heat-Strengthened Tempered Glass
of Breakage (coefficient of Glass (coefficient (coefficient of

variation = 22%) of variation - 15%) variation - 10%)

50% 6,000 11,000 23,000

5Z 3,800 8,300 19,000

0.8% 2,800 7,000 17,200

0.4% 2,500 6,600 16,600

0.2% 2,200 6,200 16,600

0.1% 1,900 5,900 15,500

"Flat Glass Technology," by Rune Persson (1969, London, Butterworth's, p. 31)

implies the following relationship between pressure and probability of breakage

for a window glass, in which p stands for the median strength, i.e., the pres-

sure giving a 50% probability of failure:

Probability

of Breakage 50% 9.2% 2.3% 0.8% 0.4% 0.14% 0.07% 0.02%

Pressure p .67p .50p .40p .33p .25p .20p .lOp
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Finally, as in the case of metals, temperature has an effect on the

elastic constants as well as the strength of glass. For selected glasses

these effects are described by Shand on pp. 38 and 53 of the earlier

cited reference. It is interesting to note that the effects of tempera-

ture are not always monotonic, and that for some glasses an increase in

temperature causes an increase, rather than a decrease,in the elastic

moduli. Here we cite only the following data on the modulus of rupture

of soda-lime plate glass, as given by Shand:

Exposure Modulus of Rupture, ksi
Conditions to Temperature,

hrs 24 C 205 C 285 C

Annealed 1 14.8 11.4 12.5

Annealed 500 14.8 13.7 12.9

Tempered 1 32.0 29.5 28.7

Tempered 500 32.0 29.0 24.0

Effect of Dissolved Alumina.- A substantial arount of data on the

viscous and electrical properties of glass, particularly as affected by

the dissolution of alumina in the glass, can be found in the following

two reports by R.W. Vest of Purdue University's Turner Laboratory for

Electroceramics, in West Lafayette, Indiana:

"Thick Film Glasses," 15 Nov. 1978, report prepared for the Naval Research
Laboratory under Contract No. N00173-77-C-0142.

"The Effect of Substrate Composition on Thick Film Circuit Reliability,"
28 Feb. 1980, report prepared for the Naval Air Systems Command under
Contract No. N00019-79-C-0240.
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5. Nickel-Iron Alloys

The nickel-iron-cobalt alloy with the ASTM designation F-15, but possessing

various trade names, of which the best known is Kovar, is frequently used as

the lead-frame, lead-wire, or case material in microelectronic packages.

Representative properties of this material and of two other nickel-iron alloys

that are sometimes used are given in the table that follows. The data pre-

sented in that table are a composite from several sources, including the 1976

"Handbook for Clad Metals" of Technical Materials, Inc. (5 Wellington Road,

Lincoln, Rhode Island 02865), the "Nicoseal" data sheet of the Carpenter

Technology Corporation (101 W. Bern St., P.O. Box 662, Reading, PA 19603),

Technical Data Sheet No. 29 of the Teledyne Rodney Metals Company (1357 East

Rodney French Blvd., New Bedford, MA 02742), and the "Uniseal 29-17" and

"Uniseal 42" data sheets of the Cyclops Corp. (850 Washington Rd., Pitts-

burgh, PA 15228). For some of the data average values have been used to

resolve discrepancies among different sources.
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There appears to be no published information on the modulus of rupture

or flexural strength of the nickel-iron alloys. By means of simple cantilever

bending tests on narrow strips cut from comercially available package lids,

the writer has obtained 107 ksi as a typical value of the modulus of rupture

of "Kovar" lids. In these tests one end of the strip was clamped in a vise,

and load was applied to the other (free) end through a hand-held force gage,

with the direction of the load constantly changdd so that it remained per-

pendicular to the strip as the strip deflected (see sketch below). The modulus

of rupture ab was easily computed from the measured values of the maximum

load P and the distance L between the load and the kink or plastic hinge

2
which forms at the clamped end, through the formula ab = 6 Pm L/bt , where

b is the width of the strip and t is its thickness. Such tests are recommended

whenever estimates are needed of the modulus of rupture of a lid or base

material.

t

40<max

L

VISE

PLASTIC HINGE

With a coefficient of variation of 8%

-281-



6. Solders

Gold-Based Solders.- Semi-Alloys, Inc. (888 So. Columbus Ave.,

Mt. Vernon, NY 10550) produces a large variety of solder and brazing alloys,

including four gold-based eutectics of possible use for microcircuit package

assembly. From their Technical Bulletin AU-80 and direct telephone con-

tact with individuals in the company, the following data have been obtained

on those four alloys:

Alloy Designation A905 A911 A912 A914

80 Au 88 Au 75 Au 96.9 Au
Composition, Weight % 20 Sn 12 Ge 25 Sb 3.1 Si

Point 280 356 360 370
Melting I OF 536 673 680 698
Thermal Conductivity, 0.60 0.63 0.54 0.68
cal/cm s _C_0.60 0.63 0.54 0.68
Thermal Expansion
Coefficientl 16.0 12.6 12.9 13.7

1o-6/0C

Density, g/cm3  14.53

Young's Modulus, R.T. 8.5 12.1

106 psi 100C 8.8 _

Tensile Strength, ksi 44 50

Indium Solders.- The Indium Corporation of America (Utica, NY 13503)

specializes in the production of solders containing indium. The following

table gives data on several of those solders (those included in their "micro-

electronics kit") as well as on two of their tin-lead solders (#106, #171),

all of it abstracted from the Indium Corporation booklet entitled "Indalloy

Speciality Solders."
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Tin-Lead and Tin-Lead-Antimony Solders.- In the previous table data

were given on two tin-lead solders of the Indium Corporation. In the

following table are summarized the properties of the tin-lead and tin-lead-

antimony solders of Alpha Metals, Inc. (600 Route 440, Jersey City, NJ 07304).

The information was obtained through the company's literature (Catalog

S/H-62) and direct telephone contact.

Alloy Designation 63/37 60/40 50/50 82 83 64 54 44
63 Sn 60 Sn 50 Sn 55 Sn 52 Sn 54 Sn 45 Sn 35 Sn

CoWoeit1on 37 Pb 40 Pb 50 Pb 42.5 Pb 45 Pb 44 Pb 53 Pb 63.5 Pb
(eight ) 2.5 Sb 3.0 Sb 2 Sb 2 Sb 1.5 Sb

Bar Bar Bar Bar Bar
Wire Wire Wire I Wire Wire Wire

Molting 361- 361- 368- 368- 368- 368- 368-

Rane. *1, 374 421 378 382 385 419 464

Tenasile
Strength, 7000 6900 5500 7800 8000 7700 6600 6000
pst
Shear
Strength, 5000 5100 4700 6400 6600 6400 5500 5000
psi

I Elongation 25-35 25-40 40-70 36-40 36-40

Thermal R.T. .118Conducti-vity,

cal/cm.s.C 140' .111
Specific 25-183 C .051
Beat
callg" "C 216-300 C .046

-284-



A more extensive survey of tin-lead and tin-lead-antimony solders is

contained in the following table. The data have been compiled from several

sources, including: The Alpha Metals Co.; "Solders and Soldering," by

H.H. Manko (McGraw-Hill, 1964); "Soft-Soldering Handbook," by C.H. Thwaites

(International Tin Research Institute, Frazer Road, Perivale, Greenford,

Middlesex, England; U.S. Office: 1353 Perry St., Columbus, Ohio 43201); the

1976 "Handbook for Clad Metals" (Technical Materials, Inc., 5 Wellington Rd.,

Lincoln, RI 02865); the 1981 "Handbook of Printed Circuit Design, Manufacture,

Components and Assembly," by Giovanni Leonida (Electrochemical Publications,

Ltd., Ayr, Scotland); and the "Development of Highly Reliable Soldered

Joints for Printed Circuit Boards" (report on Contract No. NAS8-21233,

Westinghouse Defense and Space Center, Aerospace Division, Baltimore, MD,

Aug. 1968; NTIS No. N69-25697.)
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Thermal expansion data in a recent report by B.D. Dunn ("The Resis-

tance of Space-Quality Solder Joints to Thermal Fatigue," European Space

Research & Technology Centre, Noordwijk, The Netherlands, EAS STM-207,

Sept. 1978) raises questions as to the validity of the thermal expansion

coefficients presented in the previous table. Dunn reports the following

thermal expansion coefficients for 63/37 tin/lead solder:

Temperature Range, °C -100 to 0 0 to 50 0 to 100 -100 to 100

Thermal Expansion Coeff.,

106/C17.5 
16.1 14.7 15.9

These are somewhat lower than the values given for this solder in the pre-

vious table (including the footnote). In a private conmunication to the

author, Dunn explains that the difference is probably due to (a) the purity

of his solder and (b) the fact that previously reported measurements were

all made on cast bars which were relatively slow-cooled and hence possessed

a large eutectic grain structure, whereas his measurements were performed

on samples cut from fast-cooled castings with a smaller grain structure.

It is believed that the latter specimens (and therefore Dunn's values) are

more representative of a solidified high purity solder joint.

Effects of Temperature and Rate of Testing.- As is to be expected,

the mechanical properties of solders are temperature dependent, and inas-

much as solders tend to creep, one can expect the mechanical properties to

be sensitive also to the rate of testing, i.e., to the rate at which the

load or deformation is imposed.

For the tensile and shear strengths of 63/37 tin/lead solder, in par-

ticular, the temperature dependence is shown in the following table. In
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this tabulation the tensile data are from the "Handbook of Printed Circuit

Design, Manufacture, Components & Assembly," by G. Leonida (Electrochemical

Publications Ltd., Ayr, Scotland, 1981), and the shear data are adapted from

the report, "Development of Highly Reliable Soldered Joints for Printed

Circuit Boards" (Westinghouse Defense and Space Center, Aerospace Div.,

Baltimore, MD, Aug. 1968; NTIS No. N69-25697).

Temperature, Tensile Strength Shear Strength

_ _C MN/m 2  
psi _ MN/m 2  psi

-130 89 12,900

-60 5A 8,300

0 55 8,000

20 54 7.800

25 29 4,300

40 49 7,100
60 44 6,400

80 39 5,700 18 2,600

100 30 4,400

120 21 3,000 1.2 1,700

140 15 2,100 6

150 8.6 1,300

160 9 1,400

180 .5 70
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The following graphs from the "Soft-Soldering Handbook," by C.J. Thwaites,

referred to earlier, show the effect of temperature on the tensile strength

and elongation of several other solders.

-II

-_n

_too

g= 
S nb nl A g O

-200 -100 0) 100 200,€

Variation in tensile properties of bulk solder alloys with temperature of testing :
note the loss in ductility of tin-rich alloys below about minus 100°C.
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The following graphs from the "Soft-Soldering Handbook," by C.J. Thwaites,

referred to earlier, show the effect of temperature on the tensile strength

and elongation of several other solders.

a

II

-20 0 0 100 200*C

Variation in tensile properties of bulk solder alloys with temperature of testing:
note the loss In ductility of tin-rich alloys below about minus 100*C.
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this tabulation the tensile data are from the "Handbook of Printed Circuit

Design, Manufacture, Components & Assembly," by G. Leonida (Electrochemical

Publications Ltd., Ayr, Scotland, 1981), and the shear data are adapted from

the report, "Development of Highly Reliable Soldered Joints for Printed

Circuit Boards" (Westinghouse Defense and Space Center, Aerospace Div.,

Baltimore, MD, Aug. 1968; NTIS No. N69-25697).

Temperature, Tensile Strength Shear Strength

__ C MN/m 2  
psi MN/m 2  

psi

-130 89 12,900

-60 58 8,300

0 55 8,000

20 54 7.800

25 29 4,300

40 49 7,100

60 44 6,400

80 39 5,700 18 2,600

100 30 4,400

120 21 3,000 12 1,700

140 15 2,100 1

150 8.6 1,300

160 9 1,400

180 .5 70

I
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B.D. Dunn, in the report cited earlier, gives additional data on the

temperature dependence of the tensile properties of 63/37 tin/lead solder,

which is reproduced in the table below. Dunn's tests were conducted at the

relatively low strain rate of 1.3 x 10 s . This strain rate was used in

order to more nearly represent the strain rates associated with thermal

fatigue, and the associated creep effects cause the strengths to be some-

what lower than those obtained in standard tests at higher strain rates.

Temperature Young's Proportional Tensile Permanent

OC  Modulus, Limit, psi Strength, Elongation

106 psi MN/m 2  psi after Fracture,

-70 6.96 8240 86.0 12,500 30

-20 6.11 7020 63.9 9,270 20

+20 4.58 5110 46.8 6,790 26

+60 3.83 3260 33.5 4,860 38

Young's modulus values for four solders at three temperatures were

measured by R.W. Rhode and J.C. Swearingen ("Deformation Modeling Applied

to Stress Relaxation of Four Solder Alloys," J. of Engineering Materials

and Technology, ASME, April 1980, pp. 207-214). Their results, which are

based on measurement of stress and strain decrements upon unloading from

0.2% total applied strain, are given in the following table.

Young's modulus, 106 psi
Material -51C 25C 71C

63 Sn - 37 Pb 5.25 4.18 3.76

62.5 Sn - 37 Pb - 0.5 Ag 5.34 4.35 4.05

37.5 Sn - 37.5 Pb - 25 In 5.00 4.50 3.80

50 Pb - 50 In 3.76 2.89 2.34
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The strength of a relatively thin butted tensile joint of 63/37

tin/lead solder as a function of temperature and for two different exten-

sion rates is Shown in the figure below, which is taken from the paper

"Fatigue Properties of Solder Joints," by Roger N. Wild , Welding Research

Supplemnt to the Welding Journal, Nov. 1972, pp. 521-s to 526-s. It will

be noted that the room temperature (25C) tensile strength of the joint is

considerably higher than the previously cited tensile strengths for the

bulk solder. This undoubtedly reflects the rather significant constraint

against lateral contraction for the thin solder in a tensile butt joint

as compared with the relatively free lateral contraction for the bulk

solder In a standard tensile test. In this figure the strain rate effect,

which is related to creep, is again evident.

Legend:/
a 002 in/mtn

rewforei "¢

p f ft d R e d u c t o n i n J o n t e s i e

Swwth Higher Tenperorures
awLt Strain Rates

ddtonal data on the temperature and strain effects are 
provided by

the following table, wnich gives shear strength values 
for six different

soldered Joints at 20C and 10C obtained at the very low strain rate of I

05S m/min. The table is taken from the "Soft Soldering Handbook," by

CJ. Tbal~tes, referred to earlier.
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Nominal Composition % Shear Strength Loss in strength

MN/m 2 (Ibf/in2) at (20*--100C)

Sn Pb Sb Ag 20*C 1000C

W0 40 - - 20(2840) 13(1850) 35%
10 90 - - 17 (2420) 11 (1560) 35%

62 36 - 2 28,13980) 12 (1710) 57%

40 58 2 - 24(3410) 11 (1560) 54%

95 - 5 - 28 (3980) 14 (1990) 50%

6 93.5 - 1 5 18 (2560) 12 (1710) 33%

It will be noted, for example, that the shear strength of tue bo/40 tin/lead

solder at 20C is appreciably below that given in earlier tables for the same

solder at normal testing rates.

Creep Rupture and Stress Relaxation.- Under a steadily maintained

load solder will creep and eventually rupture, especially at higher tem-

peratures. A small amount of data is available on this phenomenon. Some

of it is reproduced in the two figures below. The figures are taken from

the carlier cited works of Wild and Thwaites, respectively. Both figures

are for lap shear joints; the first applies to a 63/37 tin/lead solder,

the second to a 95/5 tin/silver solder.

100.6

I.L10 100 100 I0,alO
Failure Time (A~n)

nrw p" reptfies (Sn-Pb mutct cedetj
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Is6

m .1

I -

No 100

TIME TO FAILURE h

Stress - time to failure curves at various temperatures for overlap joint*
between brass components soldered with 96% tin-S% silver alloy.

Closely related to creep is the phenomenon of relaxation, that is, the con-

tinual reduction in stresses or load while the deformation is held constant.

The following figure which is taken from the paper by Wild, pertains to a

lap shear joint and shows the relaxation of load (ordinate) with time if the

joint is initially loaded to 90% (solid curve) or 40% (dashed curve) of its

static strength and the resulting initial deformation is maintained through-

out the test. 100.

'a U

1 20 40 60
Tis in utes

Noe Jonu elaxat;an is Very m po;d,
C a opecilly at the Hgher nfral joant

Loading%
Stress taen froperries pet
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Fatigue.- Solders, like most other metals, are vulnerable to fatigue.

The next three figures, from the paper by Wild, provide some data on the

fatigue life (cycles to failure) of three types of 63/37 tin/lead solder

joints. The first figure pertains to a lap shear joint tested at 5 cycles

per minute (CPM). The second figure pertains to a "pin-in-hole" joint

loaded so as to produce "tensile shear" in the solder, and the third to

a similar joint loaded so as to produce "compressive shear." The effect

of loading rate (CPM) is clearly visible in the data of the second figure:

the slower the loading rate, the shorter the lifetime (as measured in

cycles). A great deal of additional data of the same kind covering

additional temperatures and additional solder compositions, can be found

in the report "Some Fatigue Properties of Solders and Solder Joints," by

R.N. Wild, IBM Report No. 73Z00421, IBM Electronic Systems Center, Owego, NY,

January 1973.
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7. Wires

Gold of 99.99% purity and aluminum with 1% silicon or 1% magnesium

are materials frequently used for the fine internal wires in microcircuit

packages. These wires can be supplied in the hard (or "as drawn") con-

dition or in various annealed states. The annealing reduces the ultimate

tensile strength by an amount that depends on the degree of annealing

and, in the case of gold, significantly increases the ductility, as

measured by the elongation at failure in a tension test with a 10-inch

gage length.

The following information from one supplier, the Consolidated

Refining Co., Inc. (115 Hoyt Ave., Mamaroneck, NY 10543) will give some

idea of the tensile strengths and ductilities obtainable in gold and

aluminum fine wires. (Other suppliers include the Sigmund Cohn Corp.

of 121 S. Columbus Ave., Mt. Vernon, NY 10553 and the Secon Metals Corp.

of 7 Intervale St., White Plains, NY 10606). The range of breaking

loads and elongations shown for any given diameter indicates the varia-

tions achievable through alteration of the annealing conditions and

other manufacturing parameters. The manufacturing parameters can actually

be so controlled as to permit the elongations and breaking loads to be

specified to within much narrower limits than the table suggests. For

example, for 0.001-in. aluminum wire with 1% magnesium, one may specify

the breaking load to lie between 15 and 17 grams and the elongation to

be between 1 and 3%.
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Gold, Hard Gold. Annealed Aluminum

Mominal Z Elonga- Min. 2 Elonga- Min. % Elonga- Breaking Loads,

Diameter. tion Breaking tLion Breaking tion grams

in. Load, Load,
grams I __grams 1% Si 1% Mg

0.0005 0.5-1.5 3 1-3 1 0.5-2.0 1-5 1-5

0.0007 0.5-2.0 6 1-m7 2 0.5-2.5 3-12 4-12

0.0008 0.5-2.0 8 1-8 3

0.0009 0.5-2.0 13 1-8 4

0.001 0.5-2.5 17 1-12 5 0.5-3.5 12-22 12-24

0.0012 0.5-5.0 14-30 14-30

0.00125 0.5-5.0 15-32 18-36

0.0015 0.5-2.5 35 1-15 12 0.5-5.0 20-50 25-60

0.002 0.5-3.0 70 2-20 20 1-5 40-90 45-100

0.003 0.5-3.0 150 4-25 45

0.005 0.5-4.0 420 5-25 120

Typical curves of load vs. elongation for gold and aluminum wires of 0.001-in.

diameter are shown in the following graphs. In these graphs, the X's represent

the breaking points, and the nominal ultimate tensile strength (UTS) corresponding

to each one is marked near the X. The graphs show clearly the significant

reduction in strength and increase in elongation produced in gold wires by

annealing. The nominal young's moduli of gold and steel are 12,000,000 and

10,000,000 psi, respectively. However, these values are based on the initial

slopes of somewhat curving stress-strain curves. A better representation of

the load vs. elongation behavior depicted in the graphs for loads up to about

2/3 of the breaking load can be obtained by using reduced moduli of around

10,000,000 and 9,000,000 psi, respectively, for old and aluminum.

-298-

i%



25

UTS = 62 KSI \HARD ("AS DRAWN")
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APPENDIX B: FLEXURAL ANALYSIS OF A TWO-COMPONENT COMPOSITE PLATE

Here we consider a composite plate made up of two isotropic elastic

plates bonded together, as shown in Figure 1. The two components may have

different properties, so we denote by E1 and vI the Young's modulus and

Poisson's ratio of the upper plate, and by E2 and v 2 the corresponding

quantities for the lower plate. The thicknesses of the two plates are t

and t2 , respectively, and t = tI + t will denote the combined thickness.
29 1 2

Figure 2 shows a unit segment of the plate acted upon only by

bending moments of intensity (e.g., in.-lb/in.) M in the x-direction andx

M in the y-direction. These will produce curvatures K E - 2 w/x2 andy x

2 2
K y -3 Way in the two directions, where w(x,y) represents the deflec-y

tion surface of the plate. In this appendix equations will be developed

showing how the curvatures K and K are related to the bending momentsx y

M and M . Formulas will also be developed for the extreme-fiber cross-x y

sectional normal stresses in the two components at any location in terms

of the bending moments M and M at that location. Finally, it will bex y

shown how existing information for homogeneous (single component) plates

can be used to obtain the bending moments in a two-component plate.

This appendix presents only the basic theory of two-component plates.

Application of that theory to flatpack bases consisting of Kovar with a

ceramic substrate bonded to it is discussed in Chapter 1, Section V, and

demonstrated in Chapter 1, Section VIII.
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Figure I.- Two-component plate.

Figure 2.- Bending moments on infinitesimal segment.
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1. Notation.- Short-hand symbols will be employed to represent

certain parameter combinations that will arise naturally in the course

of the derivations. These symbols are shown and defined as follows:

3  3

D I E 2 ) D E 2t 2I
12(1-v ) 12(1-v(1)

(EltI )(E 2 t 2 )
(E1 t1 + E2 t2 ) (2)

VlEt + v2Elt
I 122 211v - (3)
E2t2 + EI1

D t2 ( l - \ l) I l-v 2 t- t2 S (4)

3 4+Et I E2 t 2 1 -2 (4)

D E D1 + D2 + D3  (5)

D' EI DI + v2D2 +vD 3  (6)

v - D'/D (7)

In addition, we call attention to the notation in Figure 4 that will be

used for the extreme-fiber cross-sectional normal stresses (positive for

tension) in the individual components. The logic behind the subscripts

in the symbols Ol, a1, etc. will undoubtedly be obvious to the reader.
X 1 1  X 1 2

2. Moment-Curvature Relations.- Figure 3 shows the bending moments

per unit width M , M , M , M , and middle-surface membrane forces
K1  K 2  y 1  y2

per unit width N and Ny , in the individual components. It will be noted
x30
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cy 4/2

Figure 3.Sending moments and membrane normal forces in individual components.

122

w
Figure /..- Notation for extreme-fiber normal stresses in Individual components.
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that the latter are shown as tension in one component, compression in the

other, so that on the cross sections as a whole there are no resultant

forces, only resultant couples.

From the static equivalence of Figures 2 and 3, we have the following

expressions for those resultant couples:

M=M +M +N x

x x x2  x2

(8)

M =M +M +N tY Yl Y2 y 2

We shall now imagine the curvatures K and K to be imposed and get expres-x y

sions for the M x, M x2, M y, M y, Nx and Ny resulting from that imposition.

Substitution of those expressions into Equations (8) will then give the

moment-curvature relations for the composite. The details follow:

From the moment-curvature relations for the individual components,

we have

M =D 1 (Kx + vK) M D 1 (K + vK)

(9)

M =D 2 (K + v 2 K) M = (K + v2x

Continuity of x-wise strain and of y-wise strain at the interface of the

two components requires that

N - v N y t1  N X-V 2N t2
S+ K - x -Y K

Elt I  x 2 E2t2  x 2

(10)
N - vlNx  tI  N - v2N t
Y +K -- Y K 1--
E2t 2  y 2 E2t 2  y 2
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Solving Equations (10) simultaneously for N and N givesx y

- K + vK
N t

x 2 -2

I-
(11)

y t 2y x-

Substitution of these expressions along with (9) into Equations (8) gives

Mx a D(Kx + vKy) My - D(Ky + vK x) (12)

as the moment-curvature relations for the composite, where D and v are

defined by Equations (5) and (7). It will be noted that Equations (12)

are exactly the same as the moment-curvature relations of a homogeneous

isotropic elastic plate (p. 81 of Reference 3, allowing for a difference

of sign convention on w), excepL for the new definitions of D and v.

These new definitions reduce to the usual ones when E1 = E2 and v, =

as they should.

Equations (12) can be inverted to give the curvatures in terms of

the bending moments:

M -v M -vM
K x a x---2-- K Y 2 ----- (13)

D(l-v 2 ) y D(l-v2)

From this result we note that where K y 0, as it is along an x-wisey

supported edge, M and M have the following relationship:y x

M - vM (14)
y 3

ii
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3. Stresses.- Any of the extreme-fiber stresses shown in Figure 4

can be obtained by superimposing the stress due to the membrane force and

that due to the bending moment for the component in which the stress

resides. Thus, referring to Figures 4 and 3 together, for the cross sec-

tion normal to the x-axis we have

a - - (Nx/t 1 (6 M /t 1)

x2 x 1

x222

The corresponding equations for the cross section perpendicular to the

y-axis are obtained by replacing every x by a y in the above.

Substitution of (9) and (11) into (15) gives the stresses in terms

of the curvatures in the following form:

a

11i §t Kx +  vK E t K 4- vK
o 2-'tl I 2y  2 1 - I2

x 12

(16)

x
21 9t Kx + vK E2t 2 Kx +vK

2 2  2 1 22
a22 2 V2x 1-x22

Replacing every x by a y and every y by an x, we can get the corresponding

expressions for a ,a a and a 1%

Yl' OY125 Y21 Y22
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It wil usually be more convenient to have the stresses expressed in

terms of the bending moments M and M , rather than in terms of the curva-

tures K and K . Therefore we shall use Equations (13) to eliminate KI y x

and K in (16). The resulting stress formulas are

11 M + (v-v) + Elt I M (I-vv) + M (Vl-V)

2 2t 2 -2 -)2 2 2
S-12 1 D(l-v2)(1-V) D(l-v )(l-V 1 2)

x2 (17)

2L §t Mx(I-vv) + M (V-v) E 2 t2 M (-vv 2) + My(V 2 -V)

a x2 2  22 D(I-v 2) (iv2) 2 D(l-v 2)(l-v 2 )

and the corresponding formulas for the a stresses are obtained by replacingy

every x by a y and every y by an x.

If M - M , as it does at the center of a square plate if the boundary
x y

conditions and loading are properly symmetric, the stress equations reduce

to

xl Yl M t Eltl-_

x 1 2  Y1 21 D(I v) 2t1-5) 2( - )-

° ::'I' y' ](18)
121 y 2 1  M Et 2t2

ax22 aY221- D('+v) 2t' -V) I2(1-v2

where M is the common value of M and M
x y
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4. Use of Existing Data.- The fact that the moment-curvature rela-

tions for the two-component plate have the same form as for the homogeneous

plate means that any bending moments and deflections known for the latter,

and expressed in terms of D and v, will also be valid for the former,

provided that D and v are evaluated by means of Equations 5 and 7. Thus,

much of the existing data for isotropic elastic plates can be taken over

bodily and applied to two-component plates. For convenience we are pre-

senting some of this existing data in Tables 1, 2 and 3. These tables

give central deflection and bending moments at certain locations for

plates with various boundary conditions subjected to a uniform pressure

in the downward direction (i.e., in the w-direction of Figure 1). All

of the information in tnese tables is taken from the treatise by Timo-

shenko and Woinowsky-Krieger, Reference 3, supplemented by Equation (14)

of this appendix.

The deflections given in these tables are valid for all values of v,

but as noted in the tables, the bending moments were computed for v = 0.3

and therefore, strictly speaking, are valid only for that v. The error

will usually be very small if the bending moments in the tables are

assumed to be valid for other values of v as well. However, if desired,

one can readily calculate corrected bending moments, M' and M' , if v
x y

has a value other than 0.3. The corrected moments at any location can

be obtained from the tabulated moments, Mx and M y, for the same location

via the following formulas (from p. 97 of Reference 3):

*0

Material from Reference 3 is used with the permission of McGraw-
Hill Book Company.
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I M' 1

x= .9-1 (-.3v)M + (v-.3)M ].9 1 x y
1(19)

M'y -1 [(1-.3v)My + (v-.3)M ]
.1y x

If H M M M, these formulas reduce tox y

S-M' = l+v M (20)
x y 1.3

If v = .3, they reduce to M' , M ' = My, as they should.
x I' y y
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Table 1.- Deflections and Bending Moments in a Uniformly Loaded 
Rectangular

Plate with All Edges Clamped

Bending Moments (for v = 0.3)
b Central

a Deflection, At Center of Plate At Middle of Longer Edges

6 M M M M
x y x y

1.0 .00126 pa 4/D .0231 pa
2  .0231 pa

2  -.0513 pa
2  -.0154 pa

2

1.1 .00150 pa
4/D .0264 pa

2  .0231 pa
2  -.0581 pa

2  -.0174 pa
2

1.2 .00172 pa 4/D .0299 pa
2  .0228 pa

2  -.0639 pa
2  -.0192 pa

2

1.3 .00191 pa4 /D .0327 pa
2  .0222 pa

2  -.0687 pa
2  -.0206 pa

2

1.4 .00207 pa 4/D .0349 pa2 .0212 pa
2  -.0726 pa

2  -.0218 pa
2

1.5 .00220 pa
4 /D .0368 pa

2  .0203 pa
2  -.0757 pa

2  -.0227 pa
2

1.6 .00230 pa4/D .0381 pa
2  .0193 pa

2  -.0780 pa
2  -.0234 pa

2

1.7 .00238 pa 4/D .0392 pa
2  .0182 pa

2  -.0799 pa
2  -.0240 pa

2

1.8 .00245 pa 4/D .0401 pa2 .0174 pa
2  -.0812 pa

2  -.0244 pa
2

1.9 .00249 pa
4 /D .0407 pa

2  .0165 pa
2  -.0822 pa

2  -.0247 pa
2

2.0 .00254 pa 4/D .0412 pa
2  .0158 pa

2  -.0829 pa
2  -.0249 pa

2

.00260 pa
4/D .0417 pa

2  .0125 pa
2  -.0833 pa

2  -.0250 pa
2
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Table 2.- Deflections and Bending Moments in a Uniformly Loaded Rectangular

Plate with All Edges Simply Supported

Bending Moments at Center of Plate

Central (for v = 0.3)
b Deflection,

a 6 M M

4 2 2

1.0 .00406 pa /D .0479 pa .0479 pa

1.1 .00485 pa
4 /D .0554 pa

2  .0493 pa
2

1.2 .00564 pa4 /D .0627 pa2  .0501 pa2

1.3 .00638 pa 4/D .0694 pa
2  .0503 pa

2

1.4 .00705 pa 4/D .0755 pa
2  .0502 pa

2

1.5 .00772 pa 4/D .0812 pa 2  .0498 pa 2

1.6 .00830 pa4/D .0862 pa
2  .0492 pa

2

1.7 .00883 pa 4/D .0908 pa
2  .0486 pa

2

42 2

1.8 .00931 pa 4/D .0948 pa .0479 pa

42 2

1.9 .00974 pa 4/D .0985 pa .0471 pa

2.0 .01013 pa4/D .1017 pa
2  .0464 pa

2

3.0 .01223 pa4/D .1189 pa
2  .0406 pa

2

4.0 .01282 pa 4/D .1235 pa
2  .0384 pa

2

5.0 .01297 pa 4/D .1246 pa
2  .0375 pa

2

.01302 pa4/D .1250 pa
2  .0375 pa

2
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Table 3.- Deflections and Bending Moments in a Uniformly 
Loaded Rectangular

Plate with the Long Edges Simply Supported, the Short Edges 
Clamped

Bending Moments (for v = 0.3)

Central At Center of Plate At Middle of Clamped Edges

a Deflection,

M M M Mx Yx

1.0 .00192 pa4 /D .0244 pa2 .033 a2 -.0204 pa2  -.0697 pa2

1.1 .00251 pa 4 /D .0307 pa2  .0371 pa2  -.0236 pa2  -.0787 pa2

1.2 .00319 pa
4 /D .0376 pa

2  .0400 pa
2  -.0260 pa

2  -.0868 pa
2

1.3 .00388 pa4/D .0446 pa2 .0426 pa2 -.0281 pa
2  -.0938 pa2

1.4 .00460 pa 4/D .0514 pa
2  .0448 pa

2  -.0299 pa
2  -.0998 pa

2

4 2 2 p 2  2
1.5 .00531 pa /D .0585 pa .0460 pa -.0315 pa -.1049 pa

1.6 .00603 pa
4 /D .0650 pa

2  .0469 pa
2  -.0327 pa

2  -.1090 pa
2

4 2 2 2 2
1.7 .00668 pa /D .0712 pa .0475 pa -.0337 pa -.1122 pa

42 222
1.8 .00732 pa

4 /D .0768 pa .0477 pa -.0346 pa
2  -.1152 pa

2

1.9 .00790 pa 4/D .0821 pa
2  .0476 pa

2  -.0352 pa
2  -.1174 pa

2

2.0 .00844 pa
4/D .0869 pa

2  .0474 pa
2  -.0357 pa

2  -.1191 pa
2

3.0 .01168 pa 4/D .1144 pa
2  .0419 pa

2  -.0374 pa
2  -.1246 pa

2

4 2 2 2 2

01302 pa/D .1250 pa .0375 pa -.0375 pa -.1250 pa
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APPENDIX C: APPROXIMATE RESPONSE OF AN ELASTIC FLAT PLATE
TO A PRESCRIBED MOTION OF ITS BOUNDARY

In this appendix a simple approximate "one-term" analysis is presented

for the elastic small-deflection flexural response of a flat plate to any

prescribed translatory motion of its boundary supports in a direction normal

to the plate. The simplicity of the analysis is due to the assumption that

at every instant the deflection of the plate, relative to its supports, is

that which would be produced by some uniform lateral pressure p. The out-

come of the analysis is a differential equation that can be solved for this

"equivalent lateral pressure" as a function of time, p(t). For an illus-

trative application that is relevant to a flatpack in a flatwise impact,

the theory is applied to a vertically falling horizontal plate with its

boundary brought to rest by a suddenly imposed constant deceleration. Such

a plate is an approximate representation of the base in an upside-down

flatwise drop test or of the lid in a right-side-up flatwise drop test.

1. Notation.- The symbols E, v, h, and p will denote the Young's

modulus, Poisson's ratio, thickness and density of the plate, respectively

(with h being used for thickness instead of t, so that t may be used for

time); also m = ph and D = Eh3/[12(1-v 2 )] will denote the mass per unit

area and plate flexural stiffness, respectively. If the plate is a two-

component composite of the kind treated in Appendix B, with properties

El, VI, hi, p1 in the upper component and E2, V2 f h2, p2 in the lower com-

ponent, D and v must be redefined by Equations (5) and (7) of Appendix B,

and m must be evaluated as p1h + P2h2. (Note that the symbols h1 and h2

are being used here in place of the symbols t1 and t2 of Figure 1 of

Appendix B.)
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The fundamental circular frequency of the plate will be represented by

W , and T = w t will be a dimensionless time parameter, with t the real time.n n

In the illustrative application, v will denote the velocity of descent of0

the plate just prior to the onset of the constant deceleration of the

supports, and t will denote the "stopping time," i.e., the duration of the5

deceleration. Thus, v /t will be the magnitude of the deceleration, and0 5

T - w t will be the dimensionless stopping time. The results will be in
s n s

terms of a dimensionless equivalent lateral pressure Q, defined by

Q(t) = p(t)/mj v 0 . Other symbols will be introduced and defined as needed.

2. Analysis.- The undeflected middle surface of the plate is imagined

to be parallel to the horizontal xy plane of a stationary Cartesian reference

frame, and the boundary support translations and elastic deflections of the

plate relative to its boundary supports are taken to be positive in the z

direction, which is normal to the xy plane and imagined to be downward.

The total displacement w(x,y,t) at any point (x,y) of the middle sur-

face at any time t will be approximated by

w(Xy,t) M Wo(t) + w1 (X,y,t)

- W (t) + p(t)f(x,y) (1)
0

where w (t) is the prescribed translation of the boundary supports;0

wI(x,y,t) is the deflection relative to the boundary supports; f(x,y)

is the static deflection the plate would experience, relative to its

boundary supports, due to a unit uniform downward lateral pressure; and

p(t) is an amplitude function. Inasmuch as f(x,y) is the deflection due

to a unit lateral pressure, the amplitude function p(t) may be regarded
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as an *equivalent lateral pressure," that is, as the lateral pressure

which, if applied statically, would give the plate the same deflection

(relative to its supports) as it has at time t in its dynamic state.

Using dots to denote differentiation with respect to t, we may

write the kinetic energy (KE) as

KE- m if w2dxdy

1 f 2 + 2-4,f + 0 2 f 2 )dxdy (2)

Assuming small deflections (no middle-surface stretching) the strain

energy (SE) is

(,2Wl 32w 1 2 32w 1 2w a2Wl 2

S O J {( - -+ -'-') - 2(l-v)[-a=-x --

ID P21 (3)

where

"ft + f )2 - 2(l-v)(f f f2 )]dxdy
i [j(fxx yy -yy xy

.if (fxxxx + 2fxxyy + f )yyyy)f dxdy (4)

In Eq. (4) subscript notation has been used for partial derivatives of

f, and the second line has been obtained by integrations by parts in the

first line, taking into account the fact that f exactly satisfies the

boundary conditions (the procedure is described in pp. 88-92 of Ref. 3).

From expressions (2) and (3) the Langrangian, L = KE - SE, may be

formed, from which the following expressions are obtained:
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- - -d () =m 6 + p f) f dxdy (5)
at W-1 dt ap 0J

L 3SE (6)
q q-

Lagrange's equation,

d aL 3L(7
- (=L) T-
d ap

then yields the followina differential equation governing 9(t):

+ Wn2p P - %oI2/I 3  (8)

where 12 - ff f dxdy, 13 " If f2 dxdy, and

Wan= VDI/l/m13  (9)

is the Rayleigh approximation to the fundamental circular frequency of

the plate based on the assumed mode f(x,y).

Explicit evaluation of the integrals Il, 12 and 13 can usually

be avoided, and Eq. (8) simplified, through the following expedients:

First, because f(x,y) is the static deflection due to a unit uniform

lateral pressure, the conservation of energy principle (external work =
1 r~1

strain energy) may be invoked to write If J f(x,y)dxdy = 1 DII,

whence 12 Di, and the differential equation (8) is reduced to

+ - n oW2Q (10)
n -36
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Secondly, if the plate is one whose exact fundamental frequency is already

known (e.g., given in Ref. id, it is suggested that the approximate w ,n

defined by Eq. (9), be replaced by the exact w . (There should be

little error in this substitution, inasmuch as the static deflection

under uniform pressure is usually a good approximation to the fundamental

vibration mode for purposes of the Rayleigh method.) Finally, a reduction

in the number of parameters can be effected by putting Eq. (10) into the

dimensionless form

+ Q = o v

d-r2  W v
no

where T = w nt is a dimensionless time and Q = p/mw nv, with v any

reference velocity, is a dimensionless "equivalent pressure" parameter.

In the following illustrative application, v will be taken as the velocity0

of descent of the falling horizontal plate just prior to the onset of the

constant deceleration of its boundary supports.

3. Illustrative Application.- We now consider a horizontal plate in

a vertical free fall, and assume that at time t = 0 a constant deceleration

of magnitude v /ts is suddenly imposed on its boundary supports, bringing

them to rest in the "stopping time" t from the -nitial velocity v . For5 0

this case, with T = w t denoting the dimensionless stopping time, thes ns

right side of Equation (11) reduces to l/T for 0 < T < T and 0 for T > T .

The solution of Equation (11), subject to the initial conditions

Q = dQ/dT = 0, is then
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Q- (1- cos t)/T for 0 < t < sa 412)

Q [ [cos (T - T ) - cos T]/T8 for T > T (13)

If the arrest is instantaneous (T s = 0), the right side of Eq. (11) is

zero for T > 0, and the jump condition dQ/dr - 1 at T - 0+, obtained

by integrating Eq. (11) from T = 0- to T - 0+, replaces the initial

condition dQ/dT - 0. The following solution is then obtained:

Q- Bin T for T > 0 (14)

Equations (12), (13) and (14) have been used to plot the graphs in

Figure 1, which show the elastic response of the plate (as measured by

the dimensionless equivalent pressure Q) to the deceleration of its

supports for several values of the dimensionless stopping time T .s

From the positive and negative peaks of such graphs, the curves of

Figure 2 were obtained. The solid and dashed curves in this figure give,

respectively, the magnitudes of the maximum positive (i.e., downward)

response and maximum negative (upward) response, as functions of the

dimensionless stopping times t s, the response in both cases being

expressed in terms of the dimensionless equivalent pressure Q.

Figures 1 and 2 are quite general, in that no assumption has been

marde as to the planform of the plate or its boundary conditions. We

shall now further specialize the present application to the case of a

homogeneous square plate with clamped edges and seek information about

the maximum flexural stress a (occurring at the midpoints of the edges)
max

and central deflection wc (relative to the boundary) resulting from any

given stopping time t . For a square plate with clamped edges it is known,
3
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from Table 4.30 of Reference 10 'hat w = 35.98VD/ma
4 

, where a is the

length of a side. For such a plate under uniform lateral pressure p, it is

also known from p. 202 of Reference 3, or from Table 1 of Appendix B, that

2 2 4
a m h /6pa = .0513 and w D/pa = .00126, whencemax c

p = 'Imaxh 2/6(.0513)a2 = w D/.00126a 4 Thus the parameter Q p/m n voc

can be interpreted as

.3128 a 6.37 w h

V 0 V a 2

where E' = E/(1-v 2 ); consequently, ama x  and w are given by

a - 3.20 v 0 Qaxo

.157 Voa 2

h E'

where Q is read from the solid curve in Pig. 2. We note that a
max

and w are both proportional to the initial velocity v , and that

for instantaneous or near-instantaneous arrest (Q ) a does

Ct depend upon the dimensions of the plate, according to the present

analysis.

In order to facilitate such calculations for clamped rectangular plates

that are other than square, we present in Figure 3, a graph of w nma4/Dn

as a function of a/b for clamped isotropic rectangular plates of width a

and length b (based on the data in Table 4.30 of Reference 10). For

simply supported plates, the fundamental circular natural frequency is given

by the formula

W= IT2 [I + (a/b)2 ] /D/ma 4  (15)
n
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APPENDIX D: TRANSISTOR THERMAL STRESSES DUE TO INTERNAL HEAT GENERATION

By R.W. Perkins

1. Introduction.- The objective in this appendix is to conduct a pre-

liminary study to obtain an approximate understanding of the thermal

stresses that may occur in a transistor device. The problem was proposed

by Mark Levi of the Rome Air Development Center. The physical situation

is illustrated by Figure 1 which shows a typical part of a transistor

device. The silicon transistor is in contact with a copper heat sink at

the bottom. Above the silicon is an aluminum conductor and a polyimide

film. The aluminum conductor can be described as a cylinder having a

diameter and a height of approximately one micron. Above the cylinder is

a much larger diameter plate of aluminum with a thickness of about one

micron. The total thickness of the polyimide film is approximately two

microns. The silicon wafer is approximately 250 microns thick.

The transistor heats up as a result of the current flow and voltage

drop that occurs in the p-doped region. The current density is assumed

to be approximately 5 x 10 amp/cm , and the voltage drop 0.6 volts. The

duty cycle is unknown. The ambient temperature of the heat sink can lie

in the range -55*C to 125 0 C.

Units such as the one described above are assumed to exist in some

sort of pattern over the surface of the silicon wafer.

The problem of determining the thermal stresses that are present durinig

the use cycle of the transistor device described above is quitE complicated.

With the additional specification of a specific geometry and an actual

duty cycle, the problem would be amenable to solution by a finite element
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or a finite difference method. For purposes of making a preliminary

analysis a highly simplified one-dimensional problem was formulated and

subjected to analysis.

For the purpose of the approximate analysis, the most serious stress

problem was assumed to be one that would put the cylindrical aluminum con-

ductor in tension since such a stress might be expected to lead to failure

of the conductor and loss of the electrical function of the device. The

tensile loading might be expected to cause failure either due to one

occurrence of a stress large enough to cause rupture of the aluminum or

due to the finite cycling of the aluminum cylinder in tensile strains that

occur as a result of thermal cycling of the device.

It is recognized that tensile and shear stresses occur at the poly-

imide film aluminum and silicon interfaces and that failure may occur at

these interfaces. Failures of this type are assumed to be relatively unim-

portant because they would not result in loss cf the electrical function,

therefore, stressing of this type is neglected in the analysis.

An initial investigation of the problem suggests that serious tensile

stress will occur in the cylindrical aluminum conductor when the temperature

of the polyimide film rises because the polyimide has a higher coefficient

of thermal expansion than that of the aluminum. Thus, as the temperature

ot the device rises, the polyimide is restrained from free expansion in

the vertical direction by the aluminum plate and the aluminum cylinder.

The present report is based on this approximate model. It consists of two

parts: (1) Given the temperature of the polyimide film and the aluminum

plate and cylinder, estimate the stress in the aluminum cylinder.

(2) Approximate analysis of the temperature rise of the polyimide film

and aluminum parts.

-325-

4kq



2. Thermal Stress Analysis.- The model for the thermal stress analysis

is shown in Figure 2. The model assumes a one-dimensional problem with uni-

form temperature rise in the aluminum, TA, and a possibly different, but

uniform, temperature rise in the polyimide, T The coefficients of thermal

expansion are designated QA and aP for the aluminum and polyimide materials

respectively.

The cylinder of aluminum with diameter d and length k is assumed to

restrain the free expansion of the polyimide cylinder of diameter D and

length Z. Within the stressed region, the strain of the aluminum and the

polyimide are equal. Taking force equilibrium into account and with the

use of the one-dimensional thermoelastic constitutive relations for the

aluminum and polyimide, the stress in the aluminum, a, can be calculated

from

ci Tp -eAT A
CL P TP -tAA (1A

EA EA
+ Ep(D 2/d -1)

Here EA, Ep represent the Young's moduli of the aluminum and polyimide,

respectively. The temperature rise TA or T must be referenced to a

temperature for which the assembly is stress-free.

Relation (1) is based on the assumption that ap T is greater than

aATA in order that the aluminum stress a be tensile. If this condition is

not met and the stress a were compressive, then a tensile stress would be

transmitted through the polyimide-aluminum interface. Failure associated

with this possibility is not considered in the present analysis. It is

expected that such a failure would not result in loss of electrical func-

tion and is therefore probably less serious than failure in the aluminum

cylinder.
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Relation (1) is also based on the assumptions that E and a are inde-

pendent of temperature and that the stress in the aluminum is less than

the yield point stress. The assumption of constant E and a values

restricts the magnitude of the temperature change T. If E is constant

over the temperature range of inte.est, then the average value of Ct over

the temperature range should be used in (1). After the yield point stress

is reached in the aluminum, further temperature rise will result in the

development of plastic strains in the aluminum.

3. Temperature Analysis.- The model for the temperature analysis

is shown in Figure 3. The model assumes that heat is generated at the

aluminum-silicon interface. A one-dimensional conduction model is assumed

with a linear temperature variation from the upper surface temperature Tp

to the temperature TS of the heat sink. It is assumed that the tempera-

ture of the polyimide and the aluminum is uniform and is the same as the

upper surface temperature Tp.

Denoting T - Tp - TS, and P the average power generated at the inter-

face, it is found that the maximum temperature T ismax

T. = P  H (2)
max k w 2

s

where k is the thermal conductivity of silicon. Some of the materials

properties information is provided in Table 1.
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4. Discussion.- In order to obtain some idea of the thermal stresses

that may be expected, the results obtained for two specific cases are

shown in Table 2. In Case I, a distance of 200 microns is assumed between

typical heat generating stations. In this case, the temperature rise is

less than one degree centigrade, and therefore, the therm4l stress is

essentially zero. Case II differs from Case I by closing up the spacing

between heat generating stations. In this case, the maximum temperature

rise is found to be 22"C.

In order to estimate the thermal stress in the aluminum corresponding

to this temperature rise, assume that the temperature of the heat sink is

20*C and that the system is stress-free at that temperature. In accordance

with the assumption of the temperature model, the temperature rise of the

aluminum and that of the polyimide will be equal. The value of TA, which

is equal to Tp in equation (1) is equal to T . The corresponding estimatemax

of the thermal stress for this temperature range is found to be 7,040 psi.

If, on the other hand, the stress free temperature is lower than the

temperature of the heat sink then the value of TA or T would be greater

than T and the corresponding estimate of the thermal stress would alsomax

be greater than 7,040 psi. For example, suppose that the temperature of

the heat sink is 60*C but the stress-free temperature remains 20'C. With

all other conditions the same, the temperature rise TA would be 62*C and the

corresponding thermal stress would be 19,840 psi.
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As illustrated by these two examples, one may expect insignificant

stresses to exist if the spacing is large while one can expect stresses

high enough to cause failure when the spacing is close. Unfortunately,

the large spacing case probably greatly underestimates the actual tempera-

ture rise because of the assumption of a one-dimensional model. The small

spacing example may be taken as a suggestion that serious stressing may

occur.

It is recommended on the basis of the results of the small spacing

example that a more refined analysis be carried out. It is felt that a

finite element or finite difference numerical method applied to an axi-

symmetric model of essenttally one typical station would yield acceptable

results. Conclusions regarding the seriousness of the thermal stresses

should be postponed until the more refined analysis can be performed.
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TABLE 2. CALCULATED RESULTS FOR TWO SPECIFIC CASES

Assumed Data Case I Case II

P 3 x 10- 3 W 3 x 10- 3 W

h 2 x 10- 6 m 2 x 10- 6 m

-6 -6H 250 x 10 -  m 250 x 10 m

d 1 x 10 - 6 m 1 X 10- 6 m

D 100 x 10 - 6 m 10 x lo-6 m

w 200 x 10 - 6 m 20 x 10 - 6 m

Calculated Quantities

Maximum

Temperature
Rise 1 0.22 0C 220 C

Thermal Stress, a 2 essentially zero 7,040 psi

3 essentially zero 19,840 psi

T calculated from equation (2)
max

2 Thermal stress calculated from equation (1) when the temperature of

the heat sink is assumed to be 20*C and the assembly is assumed to be

stress-free at that temperature.

3 Thermal stress calculated from equation (1) when the temperature of
the heat sink is assumed to be 60C and the assembly is essumed to be
stress-free at 200 C.
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APPENDIX E: PROPOSED ANALYSIS AND EXPERIMENTS FOR FURTHER

EVALUATION OF THE EFFECTS OF THERMAL SHOCK ON
THE STRESSES AND STRENGTH OF ANNULAR GLASS SEALS

By K. Kokini and C. Libove

1. Introduction.- In Chapter 8 an approximate thermal stress analy-

sis was presented for annular glass lead-through seals in packages subjected

to thermal shock. The seal was idealized as consisting of three concentric

components: a lead-through wire of circular cross section, a glass annulus

surrounding the wire, and a metal annulus surrounding the glass. The tem-

peratures in the latter annulus and the lead were assumed to be uniform

(though time-varying) within those two components. Axial (that is, parallel

to the lead) heat conduction between the thermal shock test fluid and the

glass was neglecLed, and a state of plane stress was assumed in the glass.

As a result, the temperatures and stresses in the glass at any instant of

time became functions only of the radial cordinate r, that is, they were

independent of the axial coordinate z.

In this appendix improvements in the analysis are proposed, as well

as thermal shock experiments on simple models of annular glass seals. The

analytical improvements are in the direction of including axial heat flow

in the glass and the variation of the glass temperatures and stresses in

the axial direction, while retaining all the other aspects of the model

analyzed previously. (In particular, the assumption of axial symmetry

will be retained, as well as the assumption of uniform temperatures within

the lead and the base.) The purpose of the proposed experiments is to

correlate any observed thermal shock damage with (a) the geometrical para-
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meters of the seal, (b) the depth of oxide produced in the metal in the

pre-oxidation step of the sealing process, and (c) the calculated stresses

in the glass and the glass-to-metal interfaces.

The details of the proposed work are described more fully in the

following sections, in which we shall continue to use the notation of

Chapter 8 whenever that notation is still applicable.

2. Improved Temperature Analysis.- The model for temperature analysis,

including the effects of axial heat flow in the glass, can still be taken

as shown in Figure 2 of Chapter 8 (p. 197), provided that an axial coor-

dinate z, positive upward, is added to the diagram. The origin of the

z-coordinates will be taken at the lower (inside) flat surface of the

glass annulus, so that z = 0 will identify that surface, and z = 2, where

I is the axial thickness of the glass annulus, will identify the upper

surface.

The temperature T(r,z,T) in the glass is now governed by the field

equation

aT (2)T 1 T 32T
a-[ 9 ( ag +2r -r +  2'

the initial condition

T(r,z,O) = To, (2)

the metal-glass interface boundary conditions

DT X 3TPkck zT. = hA0 [T-(T) r=a+ k 2a (r dz (3)kkV()r=a o f] rffa

V b aT I aT)
P b (-L) = h - [T -(T) b - k 2iib (-L dz (4)

"kkN ar rb N rb g J 3r rb
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the fluid-glass interface boundary condition

k (z) =h T-(T) z] , (5)

and the boundary condition

aT
kg ( = 0 , (6a)

corresponding to the assumption of an adiabatic boundary at the glass

surface that is inside the package. Anticipating that calculations will

have to be made for test specimens in which both flat surfaces of the

glass Rnnulus will be exposed to the thermal shock test fluid, we note

that for such specimens Equation (6a) must be replaced by

kg z)z =-h [Tw-(T)z=o ]  (6b)

It will be noted that the same h is used in Equations (3) and (4) as in

Equations (5) and (7); that is, the heat transfer coefficient between

fluid and metal is assumed to be the same as that between fluid and glass.

Introducing the dimensionless variables

x = r/a Z = z/t (7)

2 =2
y = Tag/a =k /P c a (8)

T.-T(r,z,T)

t = =-T t(x,Z,y) (9)
0
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hA PkCkVt
A' o B' 2

2w Ikg 21i.p c ga 2

C . .Ab D' PkCkVb (10)
2nr~k gN b 21rtp gc abN

E' =hZ/k L = /a
g

we can convert Equations (1) through (6) to the following dimensionless

form:

at a 2 t +1 at +I a2t (11)
ay =ax 2 x ax L2 -az2

.t(x,Z,O) 1 (12)

1
(at-) dZ = A'" (t) + B' (at) (13)
ax x( X=ay x=

1
- ( at dZ = C' (t + a._.14

0 xb/a x=b/a xb/a

at E

(at) E' • (t)z=1  (15)
Z-1

at
a-) = 0 (16a)

=0

at E' • (t) (16b)( f) = E (tz=o
z=O

Equations (11) to (16) will be solved by the finite-difference method.

Because of the large number of finite difference equations resulting from

any reasonably fine grid, it has been found, through trial calculations,
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that an iterative solution of the equations is more expedient and economical

than a direct solution.

3. Improved Stress Analysis.- Once the temperature distribution is

known for any given instant of time the stresses produced by that tempera-

ture distribution at that instant of time can be determined. The model

to be used for this stress analysis is that shown in Figure 3 of Chapter 8

(p. 200). Again a z-coordinate must be added to the diagram, as was done

for the temperature analysis model in Section 2 above.

The most expedient tool for the determination of the stresses is the

principle of minimum strain energy, whereby the true distribution of

displacements is that which minimizes the strain energy (with proper

allowance for the presence of thermal strains). This principle will be

implemented with the aid of a finite-difference grid whereby the strains

can be expressed in terms of first order finite differences of displace-

ments at the grid points. This energy method avoids the necessity of

giving explicit attention to the zero-stress boundary conditions at the

top and the bottom surfaces of the model and to the stress-continuity con-

ditions at the two cylindrical interfaces between the glass and the metal.

Thus an awkward surfeit of equations at the corners of the metal-glass

interfaces is avoided. The method described above is essentially a finite

element method except for the fact that an explicit distribution of dis-

placements within the elements (the grid cells) does not have to be postu-

lated.

The finite-difference grid to be used is shown in Figure 1. The grid

stations are numbered i=0, I, ... , P in the radial direction with i=O

corresponding to the axis of the lead (r=0) and i=P to the outer boundary
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(r-c) of the base. In the axial direction the grid station numbering is

J - 1, 2, ... , N, with J=I and N corresponding to the lower and upper

boundaries, respectively, of the model. It will be assumed that the grid

is laid out in such a way that the metal-glass interfaces (r=a and r=b)

correspond exactly to certain grid lines. Thus, every cell contains a

single material -- either metal or glass, rather than a mixture of

materials.

Any grid point will be identified by the pair of numbers (i,j)

associated with the two grid lines that intersect at that point, and ri

and z. will denote the r and z coordinates of that grid point. Any cell,

like the one shown shaded in Figure 1, can be identified by the pair of

numbers (i,j) associated with the grid point at its lower left corner.

The radial and axial dimensions of the cell will be denoted (Ar)i and

(Az)Y, respectively. (Ar)i may vary in the r-direction and (Az). in the

z-direction. The shaded cell in Figure 1 is the cross section of a ring

of material whose volume is

(AV)ij = 21i(Ar)i(Az). (17)

where

ri - i + ri+) (18)

is the mean radius of the cell. The Young's modulus E, shear modulus G,

Poisson's ratio v and thermal expansion coefficient r for the material in

this ring will be denoted Ei, Gi, V and a, , respectively; and will

denote the value of A for the cell material, where
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E v (19)
(l+)(1-2v)

It is assumed that some datum configuration exists in which the

temperature is uniform at the value Td and the stress distribution

throughout the material is known (e.g., the material may be stress-free

if the temperature is uniform at the set point of the glass or uniform

at room temperature). The displacement and strains in this datum con-

figuration will be taken as zero. The objective of the stress analysis

is to determine the displacements, strains and stress increments produced

by any given temperature distribution T(r,z) other than the uniform datum

temperature Td'

The radial (r-wise) and axial (z-wise) displacements will be denoted

by u(r,z) and w(r,z), respectively; and the values of u and w at the grid

point (i,j), in particular, will be denoted by uij and wij , respectively.

The displacements u(r,z) and w(r,z) give rise to the following strains

(radial, axial, circumferential, and shear, respectively).

au aw u au + (20)
r 3r Z 3z 6 r rz z 3r

Mean values of these strains for the ring of material represented by the

shaded shell of Figure 1 will be denoted by cr 1 .' i z ij, coj  and rz ij

respectively, and will be calculated as follows:

1 rui+lj - Uij + U i+l 1JI - Ui(+21r L ri (Ar)i  1 (21)

1 W -t+l wi VJ* w . , i+]i ,

Zij 2 (Az) J + (Az) J (22)
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Ii j u +Lj + + u _+l.j+ l 1 or i o
rri ri+ rJ ri+I

E~ 6 j 1+1'j uit _I(3€: = (23)

2 + --+ f. . f o r 0

+

-i ri+ij_ wi -+,+ i+
rzij - (Ar) + (Ar)i

u ij+1 uI_ ui+lj+1 - ui+1,j (
(Az) j + (Az) ' (24)

The second of Equations (23) was obtained from the first by imposing the

regularity condition

(ii ( ) (25)

r r drii=O \ r  i=

The boundary condition of zero radial displacement along the axis of the

lead will be satisfied by specifying that

u = 0 for i = 0 (26)

and rigid-body movement will be eliminated by specifying that

w 0 for (i,j) = (0,1) (27)

The mean temperature rise (AT) W, relative to the datum, in the shaded

cell of Figure 1 can be estimated as

(AT) (Tij + +T +T T (28)
ij 4 Ii+l,j Ti,j+1 Ti+Ij+l d
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where T1 ], T+,j, etc. are the values of T(r,z) associated with the corners

of the cell, as obtained by the temperature analysis of Section 2. The

corresponding mean thermal strain is

t a (AT) (29)£ c(AT
ii i ii

We now turn to the evaluation of the strain energy of the system of

rings represented by the grid rectangles of Figure 1. In the absence of

thermal effects, the strain-energy density U* of an isotropic elastic

material in a state of axially symmetric deformation is

U ( E + C)2 + G(e 2 + E 2 + C 2) + 1 G2 (30)
r* = 6 r z 6 230)

1- t
where A is defined by Equation (19) . If there is a thermal strain t

it must be subtracted from each of the normal strains in (30), which

resolts in the following modified expression for the strain-energy density:

U* X (C' + ', + E ;)2 + G~;2+ C 2+ O'2 ) + 1G 2 (31)
2 r)2 rz

where

Ct C, = C C t ' = t E (32)
r r z z 0 0

Thus, the strain energy density U in the ring whose cross section is the

ij

shaded cell of Figure 1 is

U -  W + C ; ) 2
ij 2 r z + ij

+ G ( 2 + C' 2 + C' 2) + I G '2
i rJ zij )  2 i rzij (33)

See S. Timoshenko and J.N. Goodier, "Theory of Elasticity," 2nd

ed., McGraw-Hill, NY, 1970, p. 246.

-343-



where

rlj rj i

EI .E - Ezij zij ij

(34)

t

8 8 ij8ij @ij i

rzij Yrzij

Multiplication of U by the volume of the ring gives
ij

(AU) = U (AV) (35)
(Uij = ij ij

for the strain energy of the ring, and summation over all the rings gives

P-1 N-1

U =  I I (AU)ij (36)
i=o j=i

for the total strain energy.

In order to determine the nodal displacements ulj and wlj, U must

be minimized with respect to each of those displacements whose value is

not already fixed by geometric constants. Thus, the following system

of equations must be written:
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a__ fi 1,2,. .. P)auij 0 1,2,...,N

(37)

w 0,1,2,...,P

with i=O,j=l excluded)

Equations (37) will be a system of linear equations in the u.. and w. to1] 1

be solved simultaneously for those unknowns. With uij and w ij determined,

the cell strains can be found from Equations (21) to (24), and the strains

due to stress alone from Equations (34). The stresses in any cell can then

be found by substituting the latter strains into the generalized Hooke's

law, using the elastic constants that are appropriate for the material in

that cell.

4. Experimental Program.- By the methods discussed in the two pre-

ceding sections, one can obtain estimates of the stress distributions

in the glass annulus as functions of time. However, the determination of

those stresses is not an end in itself. It is equally important for the

designer, screener, or stress analyst to be able to draw conclusions as

to whether or not those stresses will damage the seal to the extent that

hermeticity of the package is compromised during and/or after the thermal

shock test. Therefore, besides knowing the stresses, one must also know

what the "allowables" are for those stresses.

The determination of allowables is a difficult problem. There is some

strength data available for glass, but virtually none of it is directly

applicable to the glass in situ in the seal, nor to the interfacial

material formed by the glass and the oxide of whatever metal (usually
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Kovar) it is bonded to. The direct determination of strengths for the

glass and interlacial materials in a seal is virtually impossible for the

following reasons: (a) The seals are so small that it would be extremely

difficult to handle and test any samples cut from then; (b) even if the

small samples could be handled and tested, considerable damage might be

done to them in the -rocess of cutting; and (c) even if extreme care were

taken to insure no damage due to cutting, the creation of new surfaces

by the cutting could have a basic weakening effect. It is true that

large scale models of seals could be fabricated that would be physically

easier to handle, but then a scale effect would be introduced as another

uncertainty along with those produced by the cutting of test specimens

from the model.

In view of the difficulties described above, it was decided that

allowable stresses for the glass in an annular lead-through seal could

best be determined by an indirect method -- that is, by fabricating seals,

subjecting them to thermal shock tests of various levels of severity,

examining them (visually and by test) for damage, and correlating any

observed damage with the theoretical stress histories and distributions

computed for them by the methods of Sections 2 and 3.

The test specimens to be used in this study are shown schematically

in Figure 2. They consist of commercially available TO-8 Kovar eyelets

with a drilled central hole in which a Kovar lead is inserted and sealed

with Corning 7052 glass. This combination of materials (Kovar and 7052

glass) is also widely used in the electronics industry, because their

matching thermal contractions from the set point to room temperature

:eads theoretically to a stress-free seal at room temperature. There will
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be six different geometries, as indicated by the table in Figure 2 and

twenty-five samples of each geometry. The sealing will be performed by

the Air Products and Chemicals Co. of Allentown, PA in a furnace with a

controlled atmosphere. Prior to the sealing the Kovar parts alone will

be subjected to an oxidation process leading to a known and reproducible

depth of oxide on the metal surfaces that will later be in contact with

the glass.

The testing procedure will consist of the following steps:

(a) The sample is heated to a known temperature in an oven.

(b) It is then immediately inserted into a constant-temperature oil bath

at a lower temperature and left there long enough for its temperature

to become stabilized at that of the bath.

(c) The sample is removed from the bath, cleaned, and placed in a dye

penetrant intended to reveal any cracking. (The sample will have also

been subjected to the dye penetrant test before the thermal shock

in order to insure the absence of pre-existing cracks.)

(d) The sample will then be subjected to a "residual torque strength"

test, i.e., a test in which the lead is twisted in order to deter-

mine what torque (if any) will cause it to rotate in the seal.

The testing procedure just described will first be carried out on

one geometry of test specimen but with several samples representing

different levels of pre-oxidation, in order to establish an optimim pre-

oxidation level. (The findings in this phase of the program will be com-

pared with the recommendations of L. Zakraysek of the General Electric Co.

of Syracuse with regard to optimum thickness of the intergrannular oxide
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layer.) Once the optimum oxide level has been determined, that oxide

level will be used in the remaining test specimens, and the main test

variable for each geometry will then be the temperature of the specimen

prior to its insertion in the oil bath.

In order to try out the experimental procedure and the associated

apparatus, six preliminary test specimens of the T)pe 2 geometry were

fabricated and sealed by the Air Products Co., then thermal shock tested

at Syracuse University, using water (rather than oil) as the test fluid.

Six temperature differences AT were employed between oven temperature

and water bath temperature, including AT = 0 (no thermal shock). The

following table of residual torque strengths shows that there was no

reduction of strength due to the thermal shock levels employed.

AT (-F) Residual Torque
Strength (lb -in.)

0 82
324 80
524 81
624 95
724 85
924 89

However, for some of the specimens the dye penetrant treatment and visual

examination after the thermal shock, but prior to the torque test, did

reveal damage. The damage was in the form of a circumferential opening

at the lead-glass interface. As the table shows, the subsequent torque

strength was not affected by the presence of such cracks, which implies

that there was no permanent damage done to the seal by the thermal shock

test. However, the possibility of a healing process cannot be ruled

-
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out. That is, there may have been a significant transient separation

between lead wire and glass during the thermal shock, followed by virtual

closure of the gap when the specimen temperature became once again

uniform at room temperature. Methods will be sought for detecting such

transient separations.

It is expected that the experiments and the related calculations

will show that the severity and damage of a thermal shock test depends

not just on the temperature excursion involved, but also on the geometrical

parameters of the seal.
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